4 resultados para Molecular Diagnostic Techniques

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Der Vielelektronen Aspekt wird in einteilchenartigen Formulierungen berücksichtigt, entweder in Hartree-Fock Näherung oder unter dem Einschluß der Elektron-Elektron Korrelationen durch die Dichtefunktional Theorie. Da die Physik elektronischer Systeme (Atome, Moleküle, Cluster, Kondensierte Materie, Plasmen) relativistisch ist, habe ich von Anfang an die relativistische 4 Spinor Dirac Theorie eingesetzt, in jüngster Zeit aber, und das wird der hauptfortschritt in den relativistischen Beschreibung durch meine Promotionsarbeit werden, eine ebenfalls voll relativistische, auf dem sogenannten Minimax Prinzip beruhende 2-Spinor Theorie umgesetzt. Im folgenden ist eine kurze Beschreibung meiner Dissertation: Ein wesentlicher Effizienzgewinn in der relativistischen 4-Spinor Dirac Rechnungen konnte durch neuartige singuläre Koordinatentransformationen erreicht werden, so daß sich auch noch für das superschwere Th2 179+ hächste Lösungsgenauigkeiten mit moderatem Computer Aufwand ergaben, und zu zwei weiteren interessanten Veröffentlichungen führten (Publikationsliste). Trotz der damit bereits ermöglichten sehr viel effizienteren relativistischen Berechnung von Molekülen und Clustern blieben diese Rechnungen Größenordnungen aufwendiger als entsprechende nicht-relativistische. Diese behandeln das tatsächliche (relativitische) Verhalten elektronischer Systeme nur näherungsweise richtig, um so besser jedoch, je leichter die beteiligten Atome sind (kleine Kernladungszahl Z). Deshalb habe ich nach einem neuen Formalismus gesucht, der dem möglichst gut Rechnung trägt und trotzdem die Physik richtig relativistisch beschreibt. Dies gelingt durch ein 2-Spinor basierendes Minimax Prinzip: Systeme mit leichten Atomen sind voll relativistisch nunmehr nahezu ähnlich effizient beschrieben wie nicht-relativistisch, was natürlich große Hoffnungen für genaue (d.h. relativistische) Berechnungen weckt. Es ergab sich eine erste grundlegende Veröffentlichung (Publikationsliste). Die Genauigkeit in stark relativistischen Systemen wie Th2 179+ ist ähnlich oder leicht besser als in 4-Spinor Dirac-Formulierung. Die Vorteile der neuen Formulierung gehen aber entscheidend weiter: A. Die neue Minimax Formulierung der Dirac-Gl. ist frei von spuriosen Zuständen und hat keine positronischen Kontaminationen. B. Der Aufwand ist weit reduziert, da nur ein 1/3 der Matrix Elemente gegenüber 4-Spinor noch zu berechnen ist, und alle Matrixdimensionen Faktor 2 kleiner sind. C. Numerisch verhält sich die neue Formulierung ähnlilch gut wie die nichtrelativistische Schrödinger Gleichung (Obwohl es eine exakte Formulierung und keine Näherung der Dirac-Gl. ist), und hat damit bessere Konvergenzeigenschaften als 4-Spinor. Insbesondere die Fehlerwichtung (singulärer und glatter Anteil) ist in 2-Spinor anders, und diese zeigt die guten Extrapolationseigenschaften wie bei der nichtrelativistischen Schrödinger Gleichung. Die Ausweitung des Anwendungsbereichs von (relativistischen) 2-Spinor ist bereits in FEM Dirac-Fock-Slater, mit zwei Beispielen CO und N2, erfolgreich gemacht. Weitere Erweiterungen sind nahezu möglich. Siehe Minmax LCAO Nährung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the first experimental study of femtosecond time-resolved molecular multiphoton ionization. Femtosecond pump-probe techniques are combined with time-of-flight spectroscopy to measure transient ionization spectra of Na_2 in a molecular-beam experiment. The wave-packet motions in different molecular potentials show that incoherent contributions from direct photoionization of a singly excited state and from excitation and autoionization of a bound doubly excited molecular state determine the observed transient ionization signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The real-time dynamics of molecular (Na_2 . Na_3) and cluster Na_n (n=4-2l) multiphoton ionization and -fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Wave packet motion in the dimer Na_2 reveals two independent multiphoton ionization processes while the higher dimensional motion in the trimer Na_3 reflects the chaotic vibrational motion in this floppy system. The first studies of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na^*_n) ) with femtosecond laser pulses give a striking illustration of the transition from "molecule-like" excitations to "surfaceplasma"-like resonances for increasing cluster sizes. Time-resolved fragmentation of cluster ions Na_n^* indicate that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Miniaturisierung von konventioneller Labor- und Analysetechnik nimmt eine zentrale Rolle im Bereich der allgemeinen Lebenswissenschaften und medizinischen Diagnostik ein. Neuartige und preiswerte Technologieplattformen wie Lab-on-a-Chip (LOC) oder Mikrototalanalysesysteme (µTAS) versprechen insbesondere im Bereich der Individualmedizin einen hohen gesellschaftlichen Nutzen zur frühzeitigen und nichtinvasiven Diagnose krankheitsspezifischer Indikatoren. Durch den patientennahen Einsatz preiswerter und verlässlicher Mikrochips auf Basis hoher Qualitätsstandards entfallen kostspielige und zeitintensive Zentrallaboranalysen, was gleichzeitig Chancen für den globalen Einsatz - speziell in Schwellen- und Entwicklungsländern - bietet. Die technischen Herausforderungen bei der Realisierung moderner LOC-Systeme sind in der kontrollierten und verlässlichen Handhabung kleinster Flüssigkeitsmengen sowie deren diagnostischem Nachweis begründet. In diesem Kontext wird der erfolgreichen Integration eines fernsteuerbaren Transports von biokompatiblen, magnetischen Mikro- und Nanopartikeln eine Schlüsselrolle zugesprochen. Die Ursache hierfür liegt in der vielfältigen Einsetzbarkeit, die durch die einzigartigen Materialeigenschaften begründet sind. Diese reichen von der beschleunigten, aktiven Durchmischung mikrofluidischer Substanzvolumina über die Steigerung der molekularen Interaktionsrate in Biosensoren bis hin zur Isolation und Aufreinigung von krankheitsspezifischen Indikatoren. In der Literatur beschriebene Ansätze basieren auf der dynamischen Transformation eines makroskopischen, zeitabhängigen externen Magnetfelds in eine mikroskopisch veränderliche potentielle Energielandschaft oberhalb magnetisch strukturierter Substrate, woraus eine gerichtete und fernsteuerbare Partikelbewegung resultiert. Zentrale Kriterien, wie die theoretische Modellierung und experimentelle Charakterisierung der magnetischen Feldlandschaft in räumlicher Nähe zur Oberfläche der strukturierten Substrate sowie die theoretische Beschreibung der Durchmischungseffekte, wurden jedoch bislang nicht näher beleuchtet, obwohl diese essentiell für ein detailliertes Verständnis der zu Grunde liegenden Mechanismen und folglich für einen Markteintritt zukünftiger Geräte sind. Im Rahmen der vorgestellten Arbeit wurde daher ein neuartiger Ansatz zur erfolgreichen Integration eines Konzepts zum fernsteuerbaren Transport magnetischer Partikel zur Anwendung in modernen LOC-Systemen unter Verwendung von magnetisch strukturierten Exchange-Bias (EB) Dünnschichtsystemen verfolgt. Die Ergebnisse zeigen, dass sich das Verfahren der ionenbe-schussinduzierten magnetischen Strukturierung (IBMP) von EB-Systemen zur Herstellung von maßgeschneiderten magnetischen Feldlandschaften (MFL) oberhalb der Substratoberfläche, deren Stärke und räumlicher Verlauf auf Nano- und Mikrometerlängenskalen gezielt über die Veränderung der Materialparameter des EB-Systems via IBMP eingestellt werden kann, eignet. Im Zuge dessen wurden erstmals moderne, experimentelle Verfahrenstechniken (Raster-Hall-Sonden-Mikroskopie und rastermagnetoresistive Mikroskopie) in Kombination mit einem eigens entwickelten theoretischen Modell eingesetzt, um eine Abbildung der MFL in unterschiedlichen Abstandsbereichen zur Substratoberfläche zu realisieren. Basierend auf der quantitativen Kenntnis der MFL wurde ein neuartiges Konzept zum fernsteuerbaren Transport magnetischer Partikel entwickelt, bei dem Partikelgeschwindigkeiten im Bereich von 100 µm/s unter Verwendung von externen Magnetfeldstärken im Bereich weniger Millitesla erzielt werden können, ohne den magnetischen Zustand des Substrats zu modifizieren. Wie aus den Untersuchungen hervorgeht, können zudem die Stärke des externen Magnetfelds, die Stärke und der Gradient der MFL, das magnetfeldinduzierte magnetische Moment der Partikel sowie die Größe und der künstlich veränderliche Abstand der Partikel zur Substratoberfläche als zentrale Einflussgrößen zur quantitativen Modifikation der Partikelgeschwindigkeit genutzt werden. Abschließend wurde erfolgreich ein numerisches Simulationsmodell entwickelt, das die quantitative Studie der aktiven Durchmischung auf Basis des vorgestellten Partikeltransportkonzepts von theoretischer Seite ermöglicht, um so gezielt die geometrischen Gegebenheiten der mikrofluidischen Kanalstrukturen auf einem LOC-System für spezifische Anwendungen anzupassen.