19 resultados para proteolytic enzymes

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cephalopods are utilized as an important food item in various countries because of its delicacy as raw consumed food. Mainly sepia and loligo are consumed raw by Japanese and Russians. The freshness of the products is very important when the product is consumed raw. The major species that dominate our squid catch are Loligo duvaucelii and Doryteuthis sibogae. There is a noticeable difference in the quality of both the species. The needle squid (Doryteuthis sibogae ) contributes about 35% of the total squid landing. Due to the fast deterioration , a major portion of the needle squid, which is caught during the first few hauls, is thrown back to sea. The catch in the last hauls only are taken to the landing centers. At present the needle squid is processed as blanched rings and the desired quality is not obtained if it is processed as whole, whole cleaned or as tubes. In this study an attempt is made to investigate the biochemical characteristics in both the species of squid in relation to their quality and, the process control measures to be adopted. The effect of various treatments on their quality and the changes in proteolytic and lysosomal enzymes under various processing conditions are also studied in detail.Thus this study can provide the seafood industry with relevant suggestions and solutions for effective utilization of both the species of squid with emphasis on needle squid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study aimed at the utlisation of microbial organisms for the production of good quality chitin and chitosan. The three strains used for the study were Lactobacillus plantarum, Lactobacililus brevis and Bacillus subtilis. These strains were selected on the basis of their acid producing ability to reduce the pH of the fermenting substrates to prevent spoilage and thus caused demineralisation of the shell. Besides, the proteolytic enzymes in these strains acted on proteinaceous covering of shrimp and thus caused deprotenisation of shrimp shell waste. Thus the two processes involved in chitin production can be affected to certain extent using bacterial fermentation of shrimp shell.Optimization parameters like fermentation period, quantity of inoculum, type of sugar, concentration of sugar etc. for fermentation with three different strains were studied. For these, parameters like pH, Total titrable acidity (TTA), changes in sugar concentration, changes in microbial count, sensory changes etc. were studied.Fermentation study with Lactobacillus plantarum was continued with 20% w/v jaggery broth for 15 days. The inoculum prepared yislded a cell concentration of approximately 108 CFU/ml. In the present study, lactic acid and dilute hydrochloric acid were used for initial pH adjustment because; without adjusting the initial pH, it took more than 5 hours for the lactic acid bacteria to convert glucose to lactic acid and during this delay spoilage occurred due to putrefying enzymes active at neutral or higher pH. During the fermentation study, pH first decreased in correspondence with increase in TTA values. This showed a clear indication of acid production by the strain. This trend continued till their proteolytic activity showed an increasing trend. When the available sugar source started depleting, proteolytic activity also decreased and pH increased. This was clearly reflected in the sensory evaluation results. Lactic acid treated samples showed greater extent of demineralization and deprotenisation at the end of fermentation study than hydrochloric acid treated samples. It can be due to the effect of strong hydrochloric acid on the initial microbial count, which directly affects the fermentation process. At the end of fermentation, about 76.5% of ash was removed in lactic acid treated samples and 71.8% in hydrochloric acid treated samples; 72.8% of proteins in lactic acid treated samples and 70.6% in hydrochloric acid treated samples.The residual protein and ash in the fermented residue were reduced to permissible limit by treatment with 0.8N HCI and 1M NaOH. Characteristics of chitin like chitin content, ash content, protein content, % of N- acetylation etc. were studied. Quality characteristics like viscosity, degree of deacetylation and molecular weight of chitosan prepared were also compared. The chitosan samples prepared from lactic acid treated showed high viscosity than HCI treated samples. But degree of deacetylation is more in HCI treated samples than lactic acid treated ones. Characteristics of protein liquor obtained like its biogenic composition, amino acid composition, total volatile base nitrogen, alpha amino nitrogen etc. also were studied to find out its suitability as animal feed supplement.Optimization of fermentation parameters for Lactobacillus brevis fermentation study was also conducted and parameters were standardized. Then detailed fermentation study was done in 20%wlv jaggery broth for 17 days. Also the effect of two different acid treatments (mild HCI and lactic acid) used for initial pH adjustment on chitin production were also studied. In this study also trend of changes in pH. changes in sugar concentration ,microbial count changes were similar to Lactobacillus plantarum studies. At the end of fermentation, residual protein in the samples were only 32.48% in HCI treated samples and 31.85% in lactic acid treated samples. The residual ash content was about 33.68% in HCI treated ones and 32.52% in lactic acid treated ones. The fermented residue was converted to chitin with good characteristics by treatment with 1.2MNaOH and 1NHCI.Characteristics of chitin samples prepared were studied and extent of Nacetylation was about 84% in HCI treated chitin and 85%in lactic acid treated ones assessed from FTIR spectrum. Chitosan was prepared from these samples by usual chemical method and its extent of solubility, degree of deacetylation, viscosity and molecular weight etc were studied. The values of viscosity and molecular weight of the samples prepared were comparatively less than the chitosan prepared by Lactobacillus plantarum fermentation. Characteristics of protein liquor obtained were analyzed to determine its quality and is suitability as animal feed supplement.Another strain used for the study was Bacillus subtilis and fermentation was carried out in 20%w/v jaggery broth for 15 days. It was found that Bacillus subtilis was more efficient than other Lactobacillus species for deprotenisation and demineralization. This was mainly due to the difference in the proteolytic nature of the strains. About 84% of protein and 72% of ash were removed at the end of fermentation. Considering the statistical significance (P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural rubber latex, an aqueous colloidal dispersion of polyisoprene is widely used in production of gloves, catherers, rubber bands etc. The natural rubber latex content present in products such as gloves causes allergic problems. Of the different types of allergies reported, latex is known to produce Type I and Type IV allergies. Type I is called immediate hypersensitivity and type IV is called delayed hypersensitivity. It has been reported that some of the proteins present in the latex are mainly responsible for the allergic reactions type I. Significant reduction in the allergic response (type I) of natural rubber latex can be achieved by the reduction in its protein content, however out of the total proteins present in the latex or latex film only a fraction is extractable. The major techniques employed to reduce protein content of latex include leaching, autoclaving, chlorination, use of proteolytic enzymes and use of non ionic surfactants. Sulphur vulcanization of dipped products is responsible for Type IV allergy. N-nitrosamine, a carcinogenic substance is produced as a result of sulphur vulcanization. Radiation vulcanization can be used as an alternative for sulphur vulcanization. The current research deals with techniques to reduce the allergy associated with latex products. To reduce the type I allergy, low protein latex is developed using polyethylene glycol, a non- ionic surfactant. The present study employs radiation vulcanization to eliminate type IV allergy. The effect of different cure systems and fillers on the properties of low protein latex is also investigated as a part of the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is an attempt to understand the physiological responses of a freshwater gastropod, in terms of haematological parameters, in normal conditions as well as in various natural and man made altered conditions of the environment.Pila virens, a freshwater prosobranch,commonly found in paddy fields, ponds, and streams of Kerala is selected as the test animal for the present investigation. Various haemolymph constituents such as total carbohydrate, glycogen, total protein, total lipid, urea,ammonia,sodium,potasium, calcium, and chloride which are directly involved in the control and maintenance of different physiological systems, were analysed in the present study. Selected haematological parameters like total haemocyte number, and packed cell volume were also determined. Besides , the activity pattern of selected haemolymph enzymes such as acid phosphatase (ACP), alkaline phosphatase (ALP),Glutamate-oxaloacetate transaminase (GOT), and glutamate-pyruvate transaminase (GPT), all having diagnostic value in terms of internal defence system and metabolism of the organism, were also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three enzymes, α-amylase, glucoamylase and invertase, were immobilized on acid activated montmorillonite K 10 via two independent techniques, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, N2 adsorption measurements and 27Al MAS-NMR spectroscopy. The XRD patterns showed that all enzymes were intercalated into the clay inter-layer space. The entire protein backbone was situated at the periphery of the clay matrix. Intercalation occurred through the side chains of the amino acid residues. A decrease in surface area and pore volume upon immobilization supported this observation. The extent of intercalation was greater for the covalently bound systems. NMR data showed that tetrahedral Al species were involved during enzyme adsorption whereas octahedral Al was involved during covalent binding. The immobilized enzymes demonstrated enhanced storage stability. While the free enzymes lost all activity within a period of 10 days, the immobilized forms retained appreciable activity even after 30 days of storage. Reusability also improved upon immobilization. Here again, covalently bound enzymes exhibited better characteristics than their adsorbed counterparts. The immobilized enzymes could be successfully used continuously in the packed bed reactor for about 96 hours without much loss in activity. Immobilized glucoamylase demonstrated the best results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was focused to study the immobilization of enzymes on polymers. A large range of polymer matrices have been employed as supports for enzyme immobilization. Here polyaniline (PAN!) and poly(0~toluidine) (POT) were used as supports. PANI and POT provides an excellent support for enzyme immobilization by virtue of its facile synthesis, superior chemical and physical stabilities, and large retention capacity. We selected industrially important starch hydrolyzing enzymes a-amylase and glucoamylase for the study. In this work the selected enzymes were immobilized via adsorption and covalent bonding methods.To optimize the catalytic efficiency and stability of the resulting biocatalysts, the attempt was made to understand the immobilization effects on enzymatic properties. The effect of pH of the immobilization medium, time of immobilization on the immobilization efficiency was observed. The starch hydrolyzing activity of free 0:-amylase and glucoamylase were compared with immobilized forms. Immobilization on solid supports changes the microenvironment of the enzyme there by influences the pH and temperature relationship on the enzymatic activity. Hence these parameters also optimized. The reusability and storage stability of immobilized enzymes an important aspect from an application standpoint, especially in industrial applications. Taking in to consideration of this, the reusability and the long tenn storage stability of the immobilized enzyme investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylparathion (MP) is an organophosphorus insecticide used world wide in agriculture due to its high activity against a broad spectrum of insect pests. The aim of the study is to understand the effect of methylparathion on the lipid peroxidation, detoxifying and antioxidant enzymes namely catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione Stransferase (GST), total reduced glutathione (GSH), lipid peroxidation (LPO), acetylcholinesterase (AChE) and disease diagnostic marker enzymes in liver, sarcoplasmic (SP) and myofirbirllar (MF) proteins in muscles, lipids and histopathlogical changes in various organs of Labeo rohita of size 75 i 6g at lethal and sublethal level of exposure. The probit analysis showed that the lethal concentration (LC 50%) for 24, 48, 72 and 96h were 15.5mg/L, 12.3mg/L, 11.4mg/L and 10.2mg/L respectively which is much higher compared to the LC50 for juvenile fish. The LPO level and GST activity increased five folds and two folds respectively on exposure to methylparathion at 10.2 mg/L and the level of the enzymes increased, on sub lethal exposure beyond 0.25mg/L. AChE activity was inhibited by 74% at a concentration of 1.8mg/L and 90% at 5.4mg/L. The disease diagnostic marker enzymes AST, ALT, ALP and LDH increased by about 2, 3 ,3 and 2 folds respectively at pesticide concentration of 10.2mg/L when compared to control. On sub lethal exposure, however the enzymes did not show any significant changes up to 0.5mg/L. At a concentration of 10.2 mg/L, there was a three fold increase in myofibrillar proteins while the increase in sarcoplasmic protein was above 1.5 fold. On sub lethal exposure, significant alteration was noticed up to 30 days up to 1mg/L of methylparathion concentration. Further exposure up to 45 days increased sarcoplasmic proteins (upto 0.5mg/L). ln the case of myofibrillar proteins, noticeable changes were observed at 1mg/L concentration right from 15th day. The cholesterol content in brain tissues increased by about 27% at methylparathion concentration of 5.4 mglL. However at 0.25mg/L sub lethal concentration, no significant alteration was observed in enzyme activity, muscle proteins, lipids and histopathology of the tissues. The results suggest that methylparathion has the potential to induce oxidative stress in fish, and that liver, muscle and brains are more sensitive organs of Labeo rohita, with poor antioxidant potentials at higher concentrations of the pesticide. The various parameters studied in this investigation can also be used as biomarkers of methylparathion exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha glucan phosphorylase plays a very significant role in glycolysis. The inhibition and activation of this enzyme have significant effect on the rate of glycolysis. The rate of glycolysis is also determined by the interconversion between the active 3 and inactive Q forms of phosphorylase by two specific enzymes called phosphorylase phosphatase and phosphorylase kinase. The allosteric properties and interconversion mechanism reported for well—studied animal muscle phosphorylases do not fall under a general pattern. Studies using purified phosphorylase from marine sources are scanty. Detailed studies using specialised tissues from more marine animals are necessary to find the factors that control the properties and activities of the enzyme. This thesis is an attempt in this direction. The thesis deals with a detailed study of the control of the phosphorylase by both allosterism and interconversion between the g and b forms from four different aquatic animals of different habitat. Phosphorylase frm the four different animal muscles were purified either partially or completely and the kinetic and control properties were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Culturing of fish in captivity demands a detailed knowledge on well balanced diet and adequate feeding. Formulation and production of nutritionally balanced diets for fish require research, quality control and biological evaluation. It is often assuemed that what is ingested is also digested, but this is not always be the case. Digestion depends upon both the physical state of the food and the kind and quantity of enzymes in the digestive tract. The ability of fish to digest a particular component of diet can be ascertained by investigating the complement of digestive enzymes present along the digestive tract. Investigations on the basic digestive physiology will not only enhance our present knowledge on nutrition and feed development, but will also contribute in understanding the digestive functions of lower vertebrates. It is against this background that the present topic of investigation "Studies on the digestive enzymes of the cultivable grey mullet Liza parsia Hamilton Buchanan, l822" has been selected. The thesis is arranged and presented in eight chapters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of a diet not only depends on its nutrient composition and nutrient balance but also on the effective utilization by the animal. In the utilization of dietary nutrients, the digestive enzymes play the crucial role of catalysing the hydrolytic reactions, splitting the macromolecules into simple absorbable molecules. The activity of these biocatalysts is regulated by alterations in pH, temperature, substrate type and concentrations, and also by the presence of activators and inhibitors. Thus any shift from the optimum conditions necessary for these enzymes may affect their activity, thereby correspondingly modify the digestibility of the nutrients supplied to the animals. Thus, investigations on the important digestive enzymes and their preferential conditions of activity are essential, so that the results obtained could be used in rationally adjusting the quality and quantity of feed supplied to the different stages of prawns In India, directed research on nutritional physiology and biochemical approaches to digestion in commercially important prawns is taken up_ only recently, and the field is still in an infant stage. In view of its emerging importance it is identified as an area of priority and the present investigation has been carried out on the Indian white prawn Penaeus indicus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Pseudomonas sp PS-102 recovered from Muttukkadu brackish water lagoon, situated south of Chennai, showed significant activity against a number of shrimp pathogenic vibrios. Out of the 112 isolates of bacterial pathogens comprising Vibrio harveyi, V. vulnificus, V. parahaemolyticus, V. alginolyticus, V. fluvialis, and Aeromonas spp, 73% were inhibited in vitro by the cell-free culture supernatant of Pseudomonas sp PS-102 isolate. The organism produced yellowish fluorescent pigment on King's B medium, hydrolysed starch and protein, and produced 36.4% siderophore units by CAS assay and 32 μM of catechol siderophores as estimated by Arnow's assay. The PS-102 isolate showed wide ranging environmental tolerance with, temperatures from 25 to 40 °C, pH from 6 to 8, salinity from 0 to 36 ppt, while the antagonistic activity peaked in cultures grown at 30 °C, pH 8.0 and at 5 ppt saline conditions. The antagonistic activity of the culture supernatant was evident even at 30% v / v dilution against V. harveyi. The preliminary studies on the nature of the antibacterial action indicated that the antagonistic principle as heat stable and resistant to proteolytic, lipolytic and amylolytic enzymes. Pseudomonas sp PS 102 was found to be safe to shrimp when PL-9 stage were challenged at 107 CFU ml−1 and by intramuscular injection into of ∼5 g sub-adults shrimp at 105 to 108 CFU. Further, its safety in a mammalian system, tested by its pathogenicity to mice, was also determined and its LD50 to BALB/c mice was found to be 109 CFU. The results of this study indicated that the organism Pseudomonas sp PS 102 could be employed as a potential probiont in shrimp and prawn aquaculture systems for management and control of bacterial infections

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3.4. Lipase (EC-3.1. 1.3) 3.5. Other Known Enzymes 3.6. Extremozymes (Enzymes from extremophiles) 3.7. Recognition of Valuable Extremozymes 4. Enzymes as Tools in Biotechnology 4.1. Restriction Enzymes from Marine Bacteria 4.2. Other Nucleases from Marine Bacteria 4.3. Bacteriolytic Enzyme by Bacteriophage from Seawater 5. Innovations in Enzyme Technology 5.1. Enzyme Engineering 5.2. Immobilization Technology 5.3. Gene Cloning for Marine Enzymes 6. Future Prospects