5 resultados para mitogen-induced proliferation

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis Entitled Neuronal degeneration in streptozotocin induced diabetic rats: effect of aegle marmelose and pyridoxine in pancreatic B cell proliferation and neuronal survival. Diabetes mellitus, a chronic metabolic disorder results in neurological dysfunctions and structural changes in the CNS. Antioxidant therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. Our results showed regional variation and imbalance in the expression pattern of dopaminergic receptor subtypes in diabetes and its role in imbalanced insulin signaling and glucose regulation. Disrupted dopaminergic signaling and increased hyperglycemic stress in diabetes contributed to the neuronal loss. Neuronal loss in diabetic rats mediated through the expression of pattern of GLUT-3, CREB, IGF-1, Akt-1, NF,B, second messengers- cAMP, cGMP, IP3 and activation of apoptotic factors factors- TNF-a,caspase-8. Disrupted dopaminergic receptor expressions and its signaling in pancreas contributed defective insulin secretion in diabetes. Activation of apoptotic factors- TNF- a,caspase-8 and defective functioning of neuronal survival factors, disrupted second messenger signaling modulated neuronal viability in diabetes. Hyperglycemic stress activated the expression of TNF-a,caspase-8, BAX and differential expression of anti oxidant enzymes- SOD and GPx in liver lead to apoptosis. Treatment of diabetic rats with insulin, Aegle marmelose and pyridoxine significantly reversed the altered dopaminergic neurotransmission, GLUT3, GLUT2, IGF-1 and second messenger signaling. Antihyperglycemic and antioxidant activity of Aegle marmelose and pyridoxine enhanced pancreatic B cell proliferation, increased insulin synthesis and secretion in diabetic rats. Thus our results conclude the neuroprotective and regenerating ability of Aegle marmelose and pyridoxine which in turn has a novel therapeutic role in the management of diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GABAergic alterations in hypothalamus during compensatory hyperplasia after partial hepatectomy (PH), lead nitrate (LN) induced direct hyperplasia and N-nitrosodiethylamine (NDEA) induced neoplasia in liver were investigated. Serum GABA levels were increased in all 3 experimental groups compared with the control. GABA content decreased in hypothalamus of PH and NDEA treated rats, while it increased in LN treated rats. GABAA receptor number and affinity in hypothalamic membrane preparations of rats showed a significant decrease in PH and NDEA treated rats, while in LN treated rats the affinity increased without any change in the receptor number. The GABAB receptor number increased in PH and NDEA treated rats, while it decreased in LN treated rats. The affinity of the receptor also increased in NDEA treated rats. Plasma NE levels showed significant increase in PH and NDEA rats compared with the control while it decreased in LN treated rats. The results of the present study suggests that liver cell proliferation is influencing the hypothalamic GABAergic neurotransmission and these changes regulate the hepatic proliferation through the sympathetic stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gamma aminohutyric acid (GAB A.) receptor tunctionaI status was artaIV se(l in pa It ial hcpatcctoIn ised.II'II). lead nitrate (LN) induced hyperplastic and N-nifrosodiethylantinc INDEAI treated nctplastic rat Iivers during peak DNA synthesis. The high-affinity I'HJGALA binding significantly decreased in PII and NDEi\ rats and the receptor affinity decreased in NDEA and increased in LN rats compared with control . in NDEA. displacement analysis of I'I IIGABA with muscimol showed loss of low-allinity site and a shill of high-allinity cite towards low-allinity . ' 1 he affinity sites shifted towards high-affinity in LN rats. 'file number of low-allinity 1'I Ilhicuc)lline receptors decreased cignilic:uttly in NDEA and I'll whereas it increased in LN rats. (ir\Bi\t receptor :gunist. unrscinrul. disc dependcnllyinhihilcd epidermal growth factor IEGI--) induced DNA synthesis :uul enhanced the tr:utsfnrnting grmvth )actor (Il I I'(il (tlI mediated DNA synthesis suppression in prim:uy hepalucvte cultures . Our results suggest that GABA,t reccjhtor act as an inhibitory signal fur hepatic cell prolifctatiun.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the effects of 5-HT, GABA and Bone Marrow Cells infused intranigrally to substantia nigra individually and in combinations on unilateral rotenone infused Parkinsonism induced rats. Scatchard analysis of DA, DA D1 and D2 receptors in the corpus striatum, cerebral cortex, cerebellum, brain stem and hippocampus showed a significant increase in the Brain regions of rotenone infused rat compared to control. Real Time PCR amplification of DA D1, D2, Bax and ubiquitin carboxy-terminal hydrolase were up regulated in the brain regions of rotenone infused rats compared to control. Gene expression studies of -Synuclien, cGMP and Cyclic AMP response element-binding protein showed a significant down regulation in Rotenone infused rats compared to control. Behavioural studies were carried out to confirm the biochemical and molecular studies.Our study demonstrated that BMC administration alone cannot reverse the above said molecular changes occurring in PD rat. 5-HT and GABA acting through their specific receptors in combination with bone marrow cells play a crucial role in the functional recovery of PD rats. 5-HT, GABA and Bone marrow cells treated PD rats showed significant reversal to control in DA receptor binding and gene expression. 5-HT and GABA have co-mitogenic property. Proliferation and differentiation of cells re-establishing the connections in Parkinson's disease facilitates the functional recovery. Thus, it is evident that 5-HT and GABA along with BMC to rotenone infused rats renders protection against oxidative, related motor and cognitive deficits which makes them clinically significant for cellbased therapy. The BMC transformed to neurons when co-transplanted with 5-HT and GABA which was confirmed with PKH2GL and nestin. These newly formed neurons have functional significance in the therapeutic recovery of Parkinson’s disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.