2 resultados para antibody detection

em Cochin University of Science


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spike disease in sandal is generally diagnosed by the manifestation of external symptoms. Attempts have been made to detect the diseased plants by determining the length/breadth ratio of leaves (lyengar, 1961) and histochemical tests using Mann's stain (Parthasarathi et al., 1966), Dienes' stain (Ananthapadmanabha et a/., 1973) aniline blue and Hoechst 33258 (Ghosh et a/., 1985, Rangaswamy, 1995). But most of these techniques are insensitive, indirect detection methods leading to misinterpretation of results. Moreover, to identify disease resistant sandal trees, highly sensitive techniques are needed to detect the presence of the pathogen. In sandal forests, several host plants of sandal like Zizyphus oenop/ea (Fig. 1.3) also exhibit the yellows type disease symptoms. Immunological and molecular assays have to be developed to confirm the presence of sandal spike phytoplasma in such hosts. The major objectives of the present work includes:In situ detection of sandal spike phytoplasma by epifluorescence microscopy and scanning electron microscopy.,Purification of sandal spike phytoplasma and production of polyclonal antibodies.,Amino acid and total protein estimation of sandal spike phytoplasma.,Immunological detection of sandal spike phytoplasma., Molecular detection of sandal spike phytoplasma.,Screening for phytoplasma in host plants of spike disease affected sandal using immunological and molecular techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of the work undertaken here was to develop an appropriate microbial technology to protect the larvae of M.rosenbergii in hatchery from vibriosis. This technology precisely is consisted of a rapid detection system of vibrios and effective antagonistic probiotics for the management of vibrios. The present work was undertaken with the realizations that to stabilize the production process of commercial hatcheries an appropriate, comprehensive and fool proof technology is required primarily for the rapid detection of Vibrio and subsequently for its management. Nine species of Vibrio have been found to be associated with larvae of M. rosenbergii in hatchery. Haemolytic assay of the Vibrio and Aeromonas on prawn blood agar showed that all isolates of V. alginolyticus and Aeromonas sp., from moribund, necrotized larve were haemolytic and the isolates of V.cholerae, V.splendidus II, V.proteolyticus and V.fluvialis from the larvae obtained from apparently healthy larval rearing systems were non-haemolytic. Hydrolytic enzymes such as lipase, chitinase and gelatinase were widespread amongst the Vibrio and Aeromonas isolates. Dominance of V.alginolyticus among the isolates from necrotic larvae and the failure in isolating them from rearing water strongly suggest that they infect larvae and multiply in the larval body and cause mortality in the hatchery. The observation suggested that the isolate V. alginolyticus was a pathogen to the larvae of M.rosenbergii. To sum up, through this work, nine species of Vibrio and genus Aeromonas associated with M.rosenbergii larval rearing systems could be isolated and segregated based on the haemolytic activity and the antibodies (PA bs) for use in diagnosis or epidemiological studies could be produced, based on a virulent culture of V.alginolyticus. This could possibly replace the conventional biochemical tests for identification. As prophylaxis to vibriosis, four isolates of Micrococcus spp. and an isolate of Pseudomonas sp. could be obtained which could possibly be used as antagonistic probiotics in the larval rearing system of M.rosenbergii.