4 resultados para Ordre spatio-temporel

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban developments have exerted immense pressure on wetlands. Urban areas are normally centers of commercial activity and continue to attract migrants in large numbers in search of employment from different areas. As a result, habitations keep coming up in the natural areas / flood plains. This is happening in various Indian cities and towns and large habitations are coming up in low-lying areas, often encroaching even over drainage channels. In some cases, houses are constructed even on top of nallahs and drains. In the case of Kochi the situation is even worse as the base of the urban development itself stands on a completely reclaimed island. Also the topography and geology demanded more reclamation of land when the city developed as an agglomerative cluster. Cochin is a coastal settlement interspersed with a large backwater system and fringed on the eastern side by laterite-capped low hills from which a number of streams drain into the backwater system. The ridge line of the eastern low hills provides a welldefined watershed delimiting Cochin basin which help to confine the environmental parameters within a physical limit. This leads to an obvious conclusion that if physiography alone is considered, the western flatland is ideal for urban development. However it will result in serious environmental deterioration, as it comprises mainly of wetland and for availability of land there has to be large scale filling up of these wetlands which includes shallow mangrove-fringed water sheets, paddy fields, Pokkali fields, estuary etc.Chapter 1 School 4 of Environmental Studies The urban boundaries of Cochin are expanding fast with a consequent over-stretching of the existing fabric of basic amenities and services. Urbanisation leads to the transformation of agricultural land into built-up areas with the concomitant problems regarding water supply, drainage, garbage and sewage disposal etc. Many of the environmental problems of Cochin are hydrologic in origin; like water-logging / floods, sedimentation and pollution in the water bodies as well as shoreline erosion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, moving flock patterns are mined from spatio- temporal datasets by incorporating a clustering algorithm. A flock is defined as the set of data that move together for a certain continuous amount of time. Finding out moving flock patterns using clustering algorithms is a potential method to find out frequent patterns of movement in large trajectory datasets. In this approach, SPatial clusteRing algoRithm thrOugh sWarm intelligence (SPARROW) is the clustering algorithm used. The advantage of using SPARROW algorithm is that it can effectively discover clusters of widely varying sizes and shapes from large databases. Variations of the proposed method are addressed and also the experimental results show that the problem of scalability and duplicate pattern formation is addressed. This method also reduces the number of patterns produced

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS) during the different phases of coastal upwelling in 2009.During phase 1 intense upwelling was observed along the southern transects (8◦N and 8.5◦N). The maximum chlorophyll a concentration (22.7 mg m −3) was observed in the coastal waters off Thiruvananthapuram (8.5◦N). Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with the centric diatom Chaetoceros curvisetus being the dominant species along the 8◦N transect. Along the 8.5◦N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. During phase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9◦N transect (25 mg m−3) with Chaetoceros curvisetus as the dominant phytoplankton. Along the 8.5◦N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp. were significant in the waters off Kochi. Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll a concentration of 11.2 mg m−3. Along with diatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9◦N and 10◦N) the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis spp.