2 resultados para Millennium Development Goals

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis summarizes the results on the studies on a syntax based approach for translation between Malayalam, one of Dravidian languages and English and also on the development of the major modules in building a prototype machine translation system from Malayalam to English. The development of the system is a pioneering effort in Malayalam language unattempted by previous researchers. The computational models chosen for the system is first of its kind for Malayalam language. An in depth study has been carried out in the design of the computational models and data structures needed for different modules: morphological analyzer , a parser, a syntactic structure transfer module and target language sentence generator required for the prototype system. The generation of list of part of speech tags, chunk tags and the hierarchical dependencies among the chunks required for the translation process also has been done. In the development process, the major goals are: (a) accuracy of translation (b) speed and (c) space. Accuracy-wise, smart tools for handling transfer grammar and translation standards including equivalent words, expressions, phrases and styles in the target language are to be developed. The grammar should be optimized with a view to obtaining a single correct parse and hence a single translated output. Speed-wise, innovative use of corpus analysis, efficient parsing algorithm, design of efficient Data Structure and run-time frequency-based rearrangement of the grammar which substantially reduces the parsing and generation time are required. The space requirement also has to be minimised

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work emphasises on the synthesis and characterization of electro-active polymer-ceramic nanocomposites which can be used for pyroelectric thermal/infrared detection applications. Two sets of samples belong to polymer-microcrystalline composites have also been investigated in the work. The polymers used in the work have been commercially available ones, but the nanoceramics have been synthesized following simple chemical routes and aqueous organic gel routes. After characterizing the nanoceramics for their structure by powder XRD, they have been dispersed in liquid polymer and sonicated for uniform dispersion. The viscous mixture so formed was cast in the form of films for experimentation. Samples with volume fraction of the ceramic phase varied from 0 to 0.25 have been prepared. Solution growth was followed to prepare microcrystalline samples for the polymer-microcrystalline composites. The physical properties that determine the pyroelectric sensitivity of a material are dielectric constant, dielectric loss, pyroelectric coefficient, thermal conductivity and specific heat capacity. These parameters have been determined for all the samples and compositions reported in this work.The pyroelectric figures of merit for all the samples were determined. The pyroelectric figures of merit that determine the pyroelectric sensitivity of a material are current sensitivity, voltage responsivity and detectivity. All these have been determined for each set of samples and reported in the thesis. In order to assess the flexibility and mouldability of the composites we have measured the Shore hardness of each of the composites by indentation technique and compared with the pyroelectric figures of merit. Some important factors considered during the material fabrication stages were maximum flexibility and maximum figures of merit for pyroelectric thermal/IR detection applications. In order to achieve these goals, all the samples are synthesized as composites of polymers and nano/microcrystalline particles and are prepared in the form of freestanding films. The selected polymer matrices and particle inclusions possess good pyroelectric coefficients, low thermal and dielectric properties, so that good pyroelectric figures of merit could be achieved. The salient features of the work include the particle size of the selected ceramic materials. Since they are in nanometer size it was possible to achieve high flexibility and moldability with high figures of merit for even low volume fractions of inclusions of the prepared nanocrystalline composites. In the case of microcrystalline TGS and DTGS, their composites in PU matrix protect them from fragility and humidity susceptibility and made them for environmental friendly applications.