79 resultados para Microwave

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study on the preparation , characterization and microwave dielectric properties of AnBn-1O3n (N=5,6,8) type perovskite compounds. The explored ceramics show dielectric constant between 11 and 54,quality factor in the range 2400 to 88900 GHz and Tf in the range -73 to +231ppm/0C.Most of the investigated cation deficient hexagonal perovskites show intermediate dielectric constant with high quality factors. This study gives a general introduction about material, scientific and technological aspects of DRs.Three important ,€r ,Q and Tf, used for the DR characterization are described. The relationship of the above parameters with the fundamental material characteristics is discussed. Different modes are excited when a DR is excited with suitable microwave spectrum of frequencies .A description of analytical determination of frequencies and construction of mode charts used for sample design and mode identification are also discussed. In this study several ceramics are developed for DR purposes, very little attention has been paid to grow the single crystals. It might be due to the fact that the difficulties and time involved in the growth of single crystals, big enough to function as microwave resonators make them expensive .However single crystals of these materials may have very high Q values. It is also possible that a better understanding of the dielectric properties in relation to the structure can be arrived using single crystals. Hence one of the future directions of dielectric resonator research should be to grow good quality single crystals of the above materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MgAl2O4 ceramics were prepared by the conventional solid-state ceramic route and the dielectric properties studied in the microwave frequency region (3–13 GHz). The phase purity and crystal structure were identified using the X-ray diffraction technique. The MgAl2O4 spinel ceramics show interesting microwave dielectric properties (εr = 8.75, Qux f = 68 900 GHz (loss tangent = 0.00017 at 12.3 GHz), τf =−75 ppm/◦C). The MgAl2O4 has high negative τf, which precludes its immediate use in practical applications. Hence the microwave dielectric properties of MgAl2O4 spinels were tailored by adding different mole fractions of TiO2. The εr and Q factor of the mixed phases were increased with the molar addition of TiO2 into the spinel to form mixtures based on (1−x)MgAl2O4-xTiO2 (x = 0.0−1.0). For x = 0.25 in (1−x)MgAl2O4-xTiO2, the microwave quality factor reaches a maximum value of Qux f = 105 400 GHz (loss tangent = 0.00007 at 7.5 GHz) where εr and τf are 11.035 and −12 ppm/◦C, respectively. The microwave dielectric properties of the newly developed 0.75MgAl2O4-0.25TiO2 dielectric is superior to several commercially available low loss dielectric substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting polymers are excellent microwave absorbers and they show technological advantage when compared with inorganic electromagnetic absorbing materials, being light weight , easily processable, and the ability of changing the electromagnetic properties with nature and amount of dopants, synthesis conditions, etc. In this paper we report the synthesis, dielectric properties, and expected application of conducting composites based on polyaniline (PAN). Cyclohexanone soluble conducting PAN composites of microwave conductivity 12.5 S/m was synthesized by the in situ polymerization of aniline in the presence of emulsion grade polyvinyl chloride. The dielectric properties of the composites, especially the dielectric loss, conductivity, dielectric heating coefficient , absorption coefficient, and penetration depth, were studied using a HP8510 vector network analyzer. The microwave absorption of the composites were studied at different frequency bands i.e, S, C, and X bands (2-12 GHz). The absorption coefficient was found to be higher than 200 m -' and it can be used for making microwave absorbers in space applications .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report the preparation of conducting natural rubber (NR) with polyaniline (Pani). NR was made into a conductive material by the compounding of NR with Pani in powder form. NR latex was made into a conductive material by the in situ polymerization of aniline in the presence of NR latex. Different compositions of Pani- NR semi-interpenetrating networks were prepared, and the dielectric properties of all of the samples were determined in microwave frequencies. The cavity perturbation techpique was used for this study. A HP8510 vector network analyzer with a rectangular cavity resonator was used for this study. S bands 2-4 GHz in frequency were used. Thermal studies were also carried out with thermogravimetric analysis and differential scanning calorimetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report the preparation of conducting natural rubber (NR) with polyaniline (Pani). NR was made into a conductive material by the compounding of NR with Pani in powder form. NR latex was made into a conductive material by the in situ polymerization of aniline in the presence of NR latex. Different compositions of Pani- NR semi-interpenetrating networks were prepared, and the dielectric properties of all of the samples were determined in microwave frequencies. The cavity perturbation techpique was used for this study. A HP8510 vector network analyzer with a rectangular cavity resonator was used for this study. S bands 2-4 GHz in frequency were used. Thermal studies were also carried out with thermogravimetric analysis and differential scanning calorimetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the preparation and dielectric properties of poly o-toluidine:poly vinyl chloride composites in pellet and film forms. The composites were prepared using ammonium persulfate initiator and HCl dopant. The characterization is done by TGA and DSC. The dielectric properties including dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, absorption coefficient, and penetration depth were studied in the microwave field. An HP8510 vector network analyzer with rectangular cavity resonator was used for the study. Sbands (2-4 GHz), C band (5-8 GHz), and X band (8-12 GHz) frequencies were used in the microwave field. Comparisons between the pellet and film forms of composites were also included. The result shows that the dielectric properties in the microwave field are dependent on the frequency and on the method of preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave properties of conductive polymers is crucial because of their wide areas of applications such as coating in reflector antennas, coating in electronic equipments, firequenry selective .surfaces, EMI materials, satellite communication links, microchip antennas, and medical applications. This work involves a comparative study of dielectric properties of selected conducting polymers such as polyaniline. poly(3,4-eth),lenedio.syt2iophene), polvthiophene, polvpvrrole. and pohparaphenylene diazomethine (PPDA) in microwave and DC,fields. The inicrowave properties such as dielectric constant, dielectric loss. absorption coefficient, heating coefficient, skin depth, and conductivity in the microwave frequency (S hand), and DC fields were compared. PEDOT and polccuiiline were found to exhibit excellent properties in DC field and microwave frequencies, which make thein potential materials in many of the alorenientioned applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Polyaniline was synthesized by using ammonium persulfate initiator in the presence of 1M HC1. It was dried under different drying conditions like room temperature drying (for 48 h), oven drying (at 50-60°C for 8 h under a vacuum), and vacuum drying (at room temperature for 16 h). The conductivities of these samples were measured at microwave frequencies. These samples were also pelletized and the measurements were repeated. The cavity perturbation technique was used for the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric properties of polyaniline at different frequencies were studied. Cavity perturbation technique was employed for the study. Poly aniline in the powder and pelletised forms were prepared under different environmental conditions. Different samples of poly aniline exhibit high conductivity. However, the conductivity of samples prepared under different environmental conditions is found to vary. All the samples in the powder form have high conductivity irrespective of the method of preparation. The high conductivity at microwave frequency makes it possible to be used for developing microwave components like filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting polymers are excellent microwave absorbers and they show technological advantage when compared with inorganic electromagnetic absorbing materials, being light weight , easily processable, and the ability of changing the electromagnetic properties with nature and amount of dopants, synthesis conditions, etc. In this paper we report the synthesis, dielectric properties, and expected application of conducting composites based on polyaniline (PAN). Cyclohexanone soluble conducting PAN composites of microwave conductivity 12.5 S/m was synthesized by the in situ polymerization of aniline in the presence of emulsion grade polyvinyl chloride. The dielectric properties of the composites, especially the dielectric loss, conductivity, dielectric heating coefficient , absorption coefficient, and penetration depth, were studied using a HP8510 vector network analyzer. The microwave absorption of the composites were studied at different frequency bands i.e, S, C, and X bands (2-12 GHz). The absorption coefficient was found to be higher than 200 m -' and it can be used for making microwave absorbers in space applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic dielectric resonators in the BaO-RE2O3-TiO2 (RE=rare earth) system have been prepared by the conventional solid state ceramic route. The dielectric properties have been tailored by substitution of different rare earth oxides and by bismuth oxide addition. The dielectric constants increased with Bi addition whereas the Q decreased. The temperature coeffecient of the resonant frequency improved with bismuth addition.