2 resultados para Clinical effects

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pyridoxal 5'-phosphate (PLP) is the major coenzymatic form of pyridoxine. There are over one hundred known pyridoxal 5'-phosphate-dependent reactions, most of which are involved in the metabolism of various amino acids . Pyridoxamine 5'-phosphate can function in aminotransf erase reactions by the cyclic regeneration of the two active phosphate forms. Pyridoxal 5'-phosphate-dependent reactions studied in the nervous system are involved in the catabolism of various amino acids. The putative neurotransmitters , dopamine, norepinephrine , serotonin , histamine , aminobutyric acid and taurine , as well as the sphingoiipids and poly amines are synthesized by PLP-dependent enzymes. Of these enzymes, three ( glutamic acid decarboxylase , 5-hydroxytryptophan decarboxylase and crnithine decarboxylase) seem to have crucial roles (Fig. '). The clinical effects of pyridoxine deficiency can be explained on the basis of the known decreases in the activities of these enzymes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actinomycetes are gram-positive, free-living, saprophytic bacteria widely distributed in soil, water and colonizing plants showing marked chemical and morphological diversity. They are potential source of many bioactive compounds, which have diverse clinical effects and important applications in human medicine. In the present work, we have studied some of the physiological and biochemical characteristics of 36 actinomycete strains isolated from the shola soils of tropical montane forest; a relatively unexplored biodiversity hotspot. Ability of actinomycetes isolates to ferment and produce acids from various carbohydrate sources such as innositol, mannose, sorbitol, galactose, mannitol, xylose, rhamnose, arabinose, lactose and fructose were studied. Almost all the carbon compounds were utilized by one or other actinomycete isolates. The most preferred carbon sources were found to be xylose (94.44%) followed by fructose and mannose (91.66%). Only 41.76% of the isolates were able to ferment lactose. The ability of actinomycetes isolates to decompose protein and amino acid differ considerably. 72.22% of the isolates were able to decompose milk protein casein and 61.11% of the isolates decompose tyrosine. Only 8.33% of the strains were able to decompose amino acid hypoxanthine and none of them were able to decompose amino acid xanthine. Potential of the actinomycetes isolates to reduce esculin, urea and hippurate and to resist lysozyme was also checked. 91.66% of the isolates showed ability to decompose esculin and 63.88% of the isolates had the capacity to produce urease and to decompose urea. Only 25% of the isolate were able to decompose hippurate and 94.44% showed lysozyme resistance