4 resultados para Régulon Pho

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les EHEC de sérotype O157:H7 sont des agents zoonotiques d’origine alimentaire ou hydrique. Ce sont des pathogènes émergeants qui causent chez l’humain des épidémies de gastro-entérite aiguë et parfois un syndrome hémolytique-urémique. Les EHEC réussissent leur transmission à l’humain à partir de leur portage commensal chez l’animal en passant par l’étape de survie dans l’environnement. L’endosymbiose microbienne est une des stratégies utilisées par les bactéries pathogènes pour survivre dans les environnements aquatiques. Les amibes sont des protozoaires vivants dans divers écosystèmes et connus pour abriter plusieurs agents pathogènes. Ainsi, les amibes contribueraient à transmettre les EHEC à l'humain. La première partie de mon projet de thèse est centrée sur l'interaction de l’amibe Acanthamoeba castellanii avec les EHEC. Les résultats montrent que la présence de cette amibe prolonge la persistance des EHEC, et ces dernières survivent à leur phagocytose par les amibes. Ces résultats démontrent le potentiel réel des amibes à héberger les EHEC et à contribuer à leur transmission. Cependant, l’absence de Shiga toxines améliore leur taux de survie intra-amibe. Par ailleurs, les Shiga toxines sont partiellement responsables de l’intoxication des amibes par les EHEC. Cette implication des Shiga toxines dans le taux de survie intracellulaire et dans la mortalité des amibes démontre l’intérêt d’utiliser les amibes comme modèle d'interaction hôte/pathogène pour étudier la pathogénicité des EHEC. Durant leur cycle de transmission, les EHEC rencontrent des carences en phosphate inorganique (Pi) dans l’environnement. En utilisant conjointement le système à deux composantes (TCS) PhoB-R et le système Pst (transport spécifique de Pi), les EHEC détectent et répondent à cette variation en Pi en activant le régulon Pho. La relation entre la virulence des EHEC, le PhoB-R-Pst et/ou le Pi environnemental demeure inconnue. La seconde partie de mon projet explore le rôle du régulon Pho (répondant à un stress nutritif de limitation en Pi) dans la virulence des EHEC. L’analyse transcriptomique montre que les EHEC répondent à la carence de Pi par une réaction complexe impliquant non seulement un remodelage du métabolisme général, qui est critique pour sa survie, mais aussi en coordonnant sa réponse de virulence. Dans ces conditions le régulateur PhoB contrôle directement l’expression des gènes du LEE et de l’opéron stx2AB. Ceci est confirmé par l’augmentation de la sécrétion de l’effecteur EspB et de la production et sécrétion de Stx2 en carence en Pi. Par ailleurs, l’activation du régulon Pho augmente la formation de biofilm et réduit la motilité chez les EHEC. Ceci corrèle avec l’induction des gènes régulant la production de curli et la répression de la voie de production d’indole et de biosynthèse du flagelle et du PGA (Polymère β-1,6-N-acétyle-D-glucosamine).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les souches d’Escherichia coli pathogènes aviaires (APEC) sont responsables d’infections respiratoires et de septicémies chez la volaille. Le régulon Pho est contrôlé conjointement par le système à deux composantes PhoBR et par le système de transport spécifique du phosphate (Pst). Afin de déterminer l’implication de PhoBR et du système Pst dans la pathogenèse de la souche APEC O78 χ7122, différentes souche mutantes phoBR et pst ont été testées pour divers traits de virulence in vivo et in vitro. Les mutations menant à l’activation constitutive du régulon Pho rendaient les souches plus sensibles au peroxyde d’hydrogène et au sérum de lapin comparativement à la souche sauvage. De plus, l’expression des fimbriae de type 1 était affectée chez ces souches. L’ensemble des mutants Pho-constitutifs étaient aussi significativement moins virulents que la souche sauvage dans un modèle de coinfection de poulet, incluant les souches avec un système Pst fonctionnel. De plus, l’inactivation du régulateur PhoB chez un mutant Pst restaure la virulence. Par ailleurs, l’inactivation de PhoB n’affecte pas la virulence de la souche χ7122 dans notre modèle. De manière intéressante, le degré d’atténuation des souches mutantes corrèle directement avec le niveau d’activation du régulon Pho. Globalement, les résultats indiquent que l’activation du régulon Pho plutôt que le transport du phosphate via le système Pst joue un rôle majeur dans l’atténuation des APEC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plusieurs souches cliniques de Candida albicans résistantes aux médicaments antifongiques azolés surexpriment des gènes encodant des effecteurs de la résistance appartenant à deux classes fonctionnelles : i) des transporteurs expulsant les azoles, CDR1, CDR2 et MDR1 et ii) la cible des azoles 14-lanostérol déméthylase encodée par ERG11. La surexpression de ces gènes est due à la sélection de mutations activatrices dans des facteurs de transcription à doigts de zinc de la famille zinc cluster (Zn2Cys6) qui contrôlent leur expression : Tac1p (Transcriptional activator of CDR genes 1) contrôlant l’expression de CDR1 et CDR2, Mrr1p (Multidrug resistance regulator 1), régulant celle de MDR1 et Upc2p (Uptake control 2), contrôlant celle d’ERG11. Un autre effecteur de la résistance clinique aux azoles est PDR16, encodant une transférase de phospholipides, dont la surexpression accompagne souvent celle de CDR1 et CDR2, suggérant que les trois gènes appartiennent au même régulon, potentiellement celui de Tac1p. De plus, la régulation transcriptionnelle du gène MDR1 ne dépend pas seulement de Mrr1p, mais aussi du facteur de transcription de la famille basic-leucine zipper Cap1p (Candida activator protein 1), un régulateur majeur de la réponse au stress oxydatif chez C. albicans qui, lorsque muté, induit une surexpression constitutive de MDR1 conférant la résistance aux azoles. Ces observations suggèrent qu’un réseau de régulation transcriptionnelle complexe contrôle le processus de résistance aux antifongiques azolés chez C. albicans. L’objectif de mon projet au doctorat était d’identifier les cibles transcriptionnelles directes des facteurs de transcription Tac1p, Upc2p et Cap1p, en me servant d’approches génétiques et de génomique fonctionnelle, afin de i) caractériser leur réseau transcriptionnel et les modules transcriptionnels qui sont sous leur contrôle direct, et ii) d’inférer leurs fonctions biologiques et ainsi mieux comprendre leur rôle dans la résistance aux azoles. Dans un premier volet, j’ai démontré, par des expériences de génétique, que Tac1p contrôle non seulement la surexpression de CDR1 et CDR2 mais aussi celle de PDR16. Mes résultats ont identifié une nouvelle mutation activatrice de Tac1p (N972D) et ont révélé la participation d’un autre régulateur dans le contrôle transcriptionnel de CDR1 et PDR16 dont l’identité est encore inconnue. Une combinaison d’expériences de transcriptomique et d’immunoprécipitation de la chromatine couplée à l’hybridation sur des biopuces à ADN (ChIP-chip) m’a permis d’identifier plusieurs gènes dont l’expression est contrôlée in vivo et directement par Tac1p (PDR16, CDR1, CDR2, ERG2, autres), Upc2p (ERG11, ERG2, MDR1, CDR1, autres) et Cap1p (MDR1, GCY1, GLR1, autres). Ces expériences ont révélé qu’Upc2p ne contrôle pas seulement l’expression d’ERG11, mais aussi celle de MDR1 et CDR1. Plusieurs nouvelles propriétés fonctionnelles de ces régulateurs ont été caractérisées, notamment la liaison in vivo de Tac1p aux promoteurs de ses cibles de façon constitutive et indépendamment de son état d’activation, et la liaison de Cap1p non seulement à la région du promoteur de ses cibles, mais aussi celle couvrant le cadre de lecture ouvert et le terminateur transcriptionnel putatif, suggérant une interaction physique avec la machinerie de la transcription. La caractérisation du réseau transcriptionnel a révélé une interaction fonctionnnelle entre ces différents facteurs, notamment Cap1p et Mrr1p, et a permis d’inférer des fonctions biologiques potentielles pour Tac1p (trafic et la mobilisation des lipides, réponse au stress oxydatif et osmotique) et confirmer ou proposer d’autres fonctions pour Upc2p (métabolisme des stérols) et Cap1p (réponse au stress oxydatif, métabolisme des sources d’azote, transport des phospholipides). Mes études suggèrent que la résistance aux antifongiques azolés chez C. albicans est intimement liée au métabolisme des lipides membranaires et à la réponse au stress oxydatif.