7 resultados para protein degradation

em Brock University, Canada


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to examine the effect of hyper-osmotic stress on protein turnover in skeletal muscle tissue using an established in-vitro model. Rat EDL muscles were incubated in either hyper-osmotic (400 ± 10 Osm) or isoosmotic (290 ± 10 Osm) custom-modified media (Gibco). L-[14C]-U-phenylalanine (n=8) and cycloheximide (n=8) were used to quantify protein synthesis and degradation, respectively. Western blotting analyses was performed to determine the activation of protein synthesis and degradation pathways. During hyperosmotic stress, protein degradation increased (p<0.05), while protein synthesis was decreased (p<0.05) as compared to the iso-osmotic condition. The decline in protein synthesis was accompanied by a decrease (p<0.05) in p70s6 kinase phosphorylation, while the increase in protein degradation was associated with an increase (p<0.05) in autolyzed calpain. Therefore, hyper-osmotic extracellular stress results in an intracellular catabolic environment in mammalian skeletal muscle tissue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cellular stress resistance has been shown to be highly correlated with longevity. However, the mechanisms conferring this stress resistance have yet to be identified. Maintenance of protein homeostasis is a critical component of cellular maintenance and stress resistance. Superior protein homeostasis capacities may thus underlie the greater stress resistance observed in longer-lived animals; however, little vertebrate data have been provided supporting this idea. I used two different experimental approaches to test the associations of protein homeostasis capacities with stress resistance and lifespan: 1) a comparison between a large set of vertebrate species with varying body masses and lifespans and 2) a comparison of long-lived Snell dwarf mice and their normal littermates. Protein homeostasis mechanisms including protein degradation activity, protein repair activity and molecular chaperone levels were examined. These measurements were performed in liver, heart and brain tissues, and isolated myoblasts. My results indicated that neither protein degradation nor protein repair were upregulated in association with enhanced stress resistance and longevity in an inter-species and intraspecies context. Furthermore, my results did show that there is a positive correlation between molecular chaperone levels and maximum lifespan (MLSP). However, there was no elevation of chaperone levels in the long-lived Snell dwarf mouse, indicating there are other mechanisms linked to their increased lifespan. Therefore, these results suggest that molecular chaperones are involved in increasing animal lifespan in an interspecies context.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of increased extracellular leucine concentration on protein metabolism in skeletal muscle cells when exposed to 3 different osmotic stresses. L6 skeletal muscle cells were incubated in either a normal or supplemental leucine (1.5mM) medium set to hypo-osmotic (230 ± 10 Osm), iso-osmotic (330 ± 10 Osm) or hyper-osmotic (440 ± 10 Osm) conditions. 3H-tyrosine was used to quantify protein synthesis. Western blotting analysis was performed to determine the activation of mTOR, p70S6k, ubiquitin, actin, and μ-calpain. Hypo-osmotic stress resulted in the greatest increase in protein synthesis rate under the normal-leucine condition while iso-osmotic stress has the greatest increase under the elevated-leucine condition. Elevated-leucine condition had a decreased rate in protein degradation over the normal condition within the ubiquitin proteasome pathway (p<0.05). Leucine and hypo-osmotic stress therefore creates a favourable environment for anabolic events to occur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conidia of the insect pathogenic fungus, Metarhizium anisopliae play an important role in pathogenicity because they are the infective propagules that adhere to the surface of the insect, then germinate and give rise to hyphal penetration of the insect cuticle. Conidia are produced in the final stages of insect infection as the mycelia emerge from the insect cadaver. The genes associated with conidiation have not yet been studied in this fiingus. hi this study we used the PCR-based technique, suppression subtractive hybridization (SSH) to selectively amplify conidial-associated genes in M. anisopliae. We then identified the presence of these differentially expressed genes using the National Center for Biotechnology Information database. One of the transcripts encoded an extracellular subtilisin-like protease, Prl, which plays a fundamental role in cuticular protein degradation. Analysis of the patterns of gene expression of the transcripts using RT-PCR indicated that conidial-associated cDNAs are expressed during the development of the mature conidium. RT-PCR analysis was also performed to examine in vivo expression of Prl during infection of waxworm larvae {Galleria mellonelld). Results showed expression of Prl as mycelia emerge and produce conidia on the surface of the cadaver. It is well documented that Prl is produced during the initial stages of transcuticular penetration by M. anisopliae. We suggest that upregulation of Prl is part of the mechanism by which reverse (from inside to the outside of the host) transcuticular penetration of the insect cuticle allows subsequent conidiation on the cadaver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GABA (y-amino butyric acid) is a non-protein amino acid synthesized through the a-decarboxylation of L-glutamate. This reaction is catalyzed by L-glutamate decarboxylase (EC 4.1.1.15), a cytosolic Ca2+/calmodulin-stimulated enzyme. The purpose of this study is to determine whether or not GABA accumulation is associated with the hypersensitive response of isolated Asparagus sprengeri mesophyll cells. The addition of 25 J.lM mastoparan, a G protein activator, to suspensions of isolated asparagus mesophyll cells significantly increased GABA synthesis and cell death. Cell death was assessed using Evan's blue dye and fluorescein diacetate tests for cell viability. In addition, mastoparan stimulated pH-dependent alkalinization of the external medium, and a rapid and large 02 consumption followed by a loss of photosynthetic activity. The rate of 02 consumption and the net decrease in 02 in the dark was enhanced by light. The inactive mastoparan analogue Mas17 was ineffective in stimulating GABA accumulation, medium alkalinization, 02 uptake and cell death. Accumulation of H202 in response tomastoparan was not detected, however, mastoparan caused the cell-dependent degradation of added H202. The pH dependence of mastoparan-stimulated alkalinization suggests cellular electrolyte leakage, while the consumption of 02 corresponds to the oxidative burst in which 02 at the cell surface is reduced to form various active oxygen species. The results are indicative of the "hypersensitive response" of plants to pathogen attack, namely, the death of cells in the locality of pathogen invasion. The data are compatible with a model in which mastoparan triggers G protein activity, subsequent intracellular signal transduction pathway/s, and the hypersensitive response. It is postulated that the physiological elicitation of the hypersensitive response involves G protein signal transduction. The synthesis of GABA during the hypersensitive response has not been documented previously; however the role/s of GABA synthesis in the hypersensitive response, if any, remain unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypo-osmolality influences tissue metabolism, but research on protein turnover in skeletal muscle is limited. The purpose of this investigation was to examine the effects of hypo-osmotic stress on protein turnover in rat skeletal muscle. We hypothesized increased protein synthesis and reduced degradation following hypo-osmotic exposure. EDL muscles (n=8/group) were incubated in iso-osmotic (290 Osm/kg) or hypo-osmotic (190 Osm/kg) modified medium 199 (95% O2, 5% CO2, pH 7.4, 30±2 °C) for 60 min, followed by 75 min incubations with L-U[14C]phenylalanine or cycloheximide to determine protein synthesis and degradation. Immunoblotting was performed to assess signalling pathways involved. Phenylalanine uptake and incorporation were increased by 199% and 169% respectively in HYPO from ISO (p < 0.05). This was supported by elevated phosphorylation of mTOR Ser2448 (+12.5%) and increased Thr389 phosphorylation on p70s6 kinase (+23.6%) (p < 0.05). Hypo-osmotic stress increased protein synthesis and potentially amino acid uptake. Future studies should examine the upstream mechanisms involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute alterations in cell volume can substantively modulate subsequent metabolism of substrates. However, how such alterations in skeletal muscle modulate protein metabolism is limited. The purpose of this study was to determine the time dependent influence of extracellular osmotic stress on protein turnover in skeletal muscle cells. L6 cells were incubated in hyperosmotic (HYPER; 425.3 ± 1.8mmol/kg), hypo-osmotic (HYPO; 235.4 ± 1.0mmol/kg) or control (CON; 333.5 ± 1.4mmol/kg) media for 4, 8, 12, or 24hrs. During the final 4hrs, incorporation of L-[ring-3,5-3H]-tyrosine was measured to estimate protein synthesis. Western blotting measured markers of protein synthesis and degradation. No differences were observed in any outcomes except p70S6K phosphorylation whereby HYPO was lower (p<0.05) than CON and HYPER; which remained similar except for a large increase at 8hrs for HYPER. These findings suggest that regardless of duration, extracellular osmotic stress does not significantly affect protein metabolism in L6 cells.