6 resultados para phospholipid antibody

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Euclidean distance matrix analysis (EDMA) methods are used to distinguish whether or not significant difference exists between conformational samples of antibody complementarity determining region (CDR) loops, isolated LI loop and LI in three-loop assembly (LI, L3 and H3) obtained from Monte Carlo simulation. After the significant difference is detected, the specific inter-Ca distance which contributes to the difference is identified using EDMA.The estimated and improved mean forms of the conformational samples of isolated LI loop and LI loop in three-loop assembly, CDR loops of antibody binding site, are described using EDMA and distance geometry (DGEOM). To the best of our knowledge, it is the first time the EDMA methods are used to analyze conformational samples of molecules obtained from Monte Carlo simulations. Therefore, validations of the EDMA methods using both positive control and negative control tests for the conformational samples of isolated LI loop and LI in three-loop assembly must be done. The EDMA-I bootstrap null hypothesis tests showed false positive results for the comparison of six samples of the isolated LI loop and true positive results for comparison of conformational samples of isolated LI loop and LI in three-loop assembly. The bootstrap confidence interval tests revealed true negative results for comparisons of six samples of the isolated LI loop, and false negative results for the conformational comparisons between isolated LI loop and LI in three-loop assembly. Different conformational sample sizes are further explored by combining the samples of isolated LI loop to increase the sample size, or by clustering the sample using self-organizing map (SOM) to narrow the conformational distribution of the samples being comparedmolecular conformations. However, there is no improvement made for both bootstrap null hypothesis and confidence interval tests. These results show that more work is required before EDMA methods can be used reliably as a method for comparison of samples obtained by Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well accepted that structural studies with model membranes are of considerable value in understanding the structure of biological membranes. Many studies with models of pure phospholipids have been done; but the effects of divalent cations and protein on these models would make these studies more applicable to intact membrane. The present study, performed with above view, is a structural analysis of divalent io~cardio1ipin complexes using the technique of x-ray diffraction. Cardiolipin, precipitated from dilute solution by divalent ionscalcium, magnesium and barium, contains little water and the structure formed is similar to the structure of pure cardiolipin with low water content. The calcium-cardiolipin complex forms a pure hexagonal type II phase that exists from 40 to 400 C. The molar ratio of calcium and cardiolipin in the complex is 1 : 1. Cardiolipin, precipitated with magnesium and barium forms two co-existing phases, lamellar and hexagonal, the relative quantity of the two phases being dependent on temperature. The hexagonal phase type II consisting of water filled channels formed by adding calcium to cardiolipin may have a remarkable permeability property in intact membrane. Pure cardiolipin and insulin at pH 3.0 and 4.0 precipitate but form no organised structure. Lecithin/cardiolipin and insulin precipitated at pH 3.0 give a pure lamellar phase. As the lecithin/cardiolipin molar ratio changes from 93/7 to SO/50, (a) the repeat distance of the lamellar changes from 72.8 X to 68.2 A; (b) the amount of protein bound increases in such a way that cardiolipin/insulin molar ratio in the complex reaches a maximum constant value at lecithin/cardiolipin molar ratio 70/30. A structural model based on these data shows that the molecular arrangement of lipid and protein is a lipid bilayer coated with protein molecules. The lipid-protein interaction is chiefly electrostatic and little, if any, hydrophobic bonding occurs in this particular system. So, the proposed model is essentially the same as Davson-Daniellifs model of biological membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic forces between membranes containing charged lipids were assumed to play an important role in influencing interactions between membranes long before quantitative measurements of such forces were available. ~ur measurements were designed to measure electrostatic forces between layers of lecithin charged with lipi~s carrying ionizable head groups. These experiments have shown that the interactions between charged lipid bila.yere are dominated by electrostatic forces only at separations greater than 30 A. At smaller separations the repulsion between charged bilayers is dominated by strong hydration forces. The net repulsive force between egg lecithin bilayers containing various amounts of cherged lipids (phosphatidylglycerol (PG) 5,10 ano 50 mole%, phosphatidyli. nosi tol (PI) 10 mole% and sodium oleate (Na-Ol) 3,5 and 10 mole%, where mole% gives the ratio of the number of moles' of .charged lipid to the total number of moles of all lipids present in the sample) was stuoied with the help ('If the osmotic streas technique described by LeNeveu et aI, (1977). Also, the forces between pure PG were j_nvestigated in the same manner. The results have been plotted showing variation of force as a function of bilay- _ er separation dw• All curVes 90 obtained called force curves, were found to be similar in sha.pe, showing two distinct regions, one when dw<.30 A is a region cf very rapid iiivariation of force with separation ( it is the region dominated by hydre,tion force) and second when dw> 40 A is a region of very slow variation of force with separB.tion ( it is the region dominated by the electrostatic force). Between these two regions there exists a transition area in which, in most systems studied, a phase separation of lipids into fractions containing different amounts of charged groups, was observed. A qualitative analysis showed that our results were v/ell described by the simple electrostatic double -le.yer theory. For quantitative agreement between measured and calculated force curves however, the charge density for the calculations had to be taken as half of that given by the number density of charged lipids present in the lecithin bilayers. It is not clear at the moment what causes such low apparent degree of ionization among the charged head groups, and further study is needed in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Order parameter profiles extracted from the NMR spectra of model membranes are a valuable source of information about their structure and molecular motions. To al1alyze powder spectra the de-Pake-ing (numerical deconvolution) ~echnique can be used, but it assumes a random (spherical) dist.ribution of orientations in the sample. Multilamellar vesicles are known to deform and orient in the strong magnetic fields of NMR magnets, producing non-spherical orientation distributions. A recently developed technique for simultaneously extracting the anisotropies of the system as well as the orientation distributions is applied to the analysis of partially magnetically oriented 31p NMR spectra of phospholipids. A mixture of synthetic lipids, POPE and POPG, is analyzed to measure distortion of multilamellar vesicles in a magnetic field. In the analysis three models describing the shape of the distorted vesicles are examined. Ellipsoids of rotation with a semiaxis ratio of about 1.14 are found to provide a good approximation of the shape of the distorted vesicles. This is in reasonable agreement with published experimental work. All three models yield clearly non-spherical orientational distributions, as well as a precise measure of the anisotropy of the chemical shift. Noise in the experimental data prevented the analysis from concluding which of the three models is the best approximation. A discretization scheme for finding stability in the algorithm is outlined

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids, with various associated mechanical properties, have been shown to influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model systems composed of phospholipids and gramicidin, the physical effects incurred by gramicidin incorporation were measured. The reverse hexagonal (H^) phase composed of dioleoylphosphatidylethanolamine (DOPE) monolayers decreased in lattice dimension with increasing incorporation of gramicidin. This indicated that gramicidin was adding negative curvature to the monolayers. In this system, gramicidin was measured to have an apparent intrinsic radius of curvature (Rop*™") of -7. 1 A. The addition of up to 4 mol% gramicidin in mixtures with DOPE did not result in the monolayers becoming stiffer, as indicated by unaltered bending moduli for each composition. Dioleoylphosphatidylcholine (DOPC) alone forms the lamellar (LJ phase when hydrated, but undergoes a transition into the H^ phase when mixed with gramicidin. The lattice repeat dimension decreases systematically with increased gramicidin content. Again, this indicated that gramicidin was adding negative curvature to the monolayers. At 12 mol% gramicidin in mixtures with DOPC, the apparent radius of intrinsic curvature of gramicidin (Rop*"^) was measured to be -7.4 A. This mixture formed monolayers that were very resistant to bending under osmotic pressure, with a measured bending modulus of 1 15 kT. The measurements made in this study demonstrate that peptides are able to modulate the spontaneous curvature and other mechanical properties of phospholipid assemblies.