5 resultados para Nematodes.

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sugar beet cyst nematode, Heterodera schachtii, is a major agricultural pest. The disruption of the mating behaviour of this plant parasite in the field may provide a means of biological control, and a subsequent increase in crop yield. The H. schachtii female sex pheromone, which attracts homospecific males, was collected in an aqueous medium and isolated using high performance liquid chromatography. Characterization of the male-attractive material revealed that it was heat stable and water soluble. The aqueous medium conditioned by female H. schachtii was found to be biologically active and stimulated male behaviour in a concentration dependent manner. The activity of the crude pheromone was specific to males of H. schachtii and did not attract second stage juveniles. Results indicated that vanillic acid, a putative nematode pheromone, is not an active component of the H. schachtii sex pheromone. Male H. schachtii exhibited stylet thrusting, a poorly understood behaviour of the male, upon exposure to the female sex pheromone. This behaviour appeared to be associated with mate-finding and was used as a novel indicator of biological activity in bioassays. Serotonin, thought to be involved in the neural control of copulatory behaviour in nematodes, stimulated stylet thrusting. However, the relationship between stylet thrusting induced by the sex pheromone and stylet thrusting induced by serotonin is not clear. Extracellular electrical activity was recorded fi-om the anterior region of H. schachtii males during stylet thrusting, and appeared to be associated with this behaviour. The isolation of the female sex pheromone of H. schachtii may, ultimately, lead to the structural identification and synthesis of the active substance for use in a novel biological control strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mermithid nematodes (Nematoda: Mermithidae) parasitize larval, pupal and adult black flies (Diptera: Simuliidae), oftentimes resulting in partial or complete host feminization. This study was designed to characterize parasite-host seasonal variation and to estabUsh the developmental life stage at which feminization is initiated. Data indicate that the total adult population of black flies collected from Algonquin Provincial Park throughout the spring of 2004 was comprised of 31.8% female, 67.8% male and 0.4% intersex individuals. Of the total population, 0.6% was infected by mermithid nematodes (69.0% female, 3.5% male and 27.6% intersex). Seasonal infection trends established over a 12-month period revealed that black flies with different life histories host the same mermithid subfamilies, while black flies with similar life histories host mermithids from different subfamilies. If a simuliid species simultaneously hosts two mermithid species, these parasites are from different subfamilies. Molecular mermithid identification revealed two mermithid subfamilies, Me.somermithinae and Gastromermithinae, present in the simuliid hosts. Mermithid colour variation was not found to be a reliable species indicator. The developmental stage at which feminization is initiated was determined by examining gonad morphology and meiotic chromosomal condition. Results indicate that mermithid-infected black flies exhibit feminization prior to larval histoblast formation. Larvae can be morphologically male (testes present) or female (ovaries present), with morphological males exhibiting either male (achiasmate) or female (chiasmate) meiotic chromosomes; morphological females were only genetically female. Additionally, mermithid infection inhibits simuliid gonad development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Involvement of ethylene in the etiology of tomato plants (Lycopersicon esculentum) infected with the root-knot nematode (Meloidogyne incognita) was investigated. Endogenous root concentrations of ethylene were not significantly different in uninfected resistant var. Anahu and susceptible var. Vendor plants. Exposure of resistant plants to high doses of infectious nematode larvae did not affect root ethylene concentrations during the subsequent 30 day period. The possibility that ethylene may be involved in the mechanism of resistance is therefore not supported by these experiments. In no experiments did ethylene concentrations in roots of susceptible plants increase significantly subsequent to ~ incognita infestation. This result is not consistent with the hypothesis in the literature which suggests that increased ethylene production accompanies gall formation. Growth of susceptible tomato plants was affected by ~ incognita infestation such that root weights increased (due to galling), stem heights decreased and top weights increased. The possibility that alterations in stem growth resulted from increased production of 'stress' ethylene is discussed. Growth of resistant plants was unaffected by exposure to high doses of ~ incognita and galls were never detected on the roots of these plants. Root ethane concentrations generally varied in parallel with root ethylene concentrations although ethane concentrations were without exception greater. In 4 of 6 experiments conducted ethane/ethylene ratios increased significantly with time. These results are discussed in the light of published data on the relationship between ethane and ethylene synthesis. The term infested is used throughout this thesis in reference to plants whose root systems had been exposed to nematodes and does not distinguish between the susceptible and resistant response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high performance liquid chromatographic method employing two columns connected in series and separated~y·a.switching valve has been developed for the analysis of the insecticide/ nematicide oxamyl (methyl-N' ,N'-dimethyl-N-[(methylcarbamoyl) oxy]-l-thiooxarnimidate) and two of its metabolites. A variation of this method involving two reverse phase columns was employed to monitor the persistence and translocation of oxamyl in treated peach seedlings. It was possible to simultaneously analyse for oxamyl and its corresponding oxime (methyl-N',N'-dimethyl-N-hydroxy-l-thiooxamimidate}, a major metabolite of oxamyl in plants, without prior cleanup of the samples. The method allowed detection of 0.058 pg oxamyl and 0.035 p.g oxime. On treated peach leaves oxamyl was found to dissipate rapidly during the first two-week period, followed by a period of slow decomposition. Movement of oxamyl or its oxime did not occur in detectable quantities to untreated leaves or to the root or soil. A second variation of the method which employed a size exclusion column as·the first column and a reverse phase column as the second was used to monitor the degradation of oxamyl in treated, planted corn seeds and was suitable for simultaneous analysis of oxamyl, its oxime and dimethylcyanoformamide (DMCF), a metabolite of oxamyl. The method allowed detection of 0.02 pg oxamyl, 0.02 p.g oxime and 0.005 pg DMCF. Oxamyl was found to persist for a period of 5 - 6 weeks, which is long enough to permit oxamyl seedtreatment to be considered as a potential means of protecting young corn plants from nematode attack. Decomposition was found to be more rapid in unsterilized soil than in sterililized soil. DMCF was found to have a nematostatic effect at high concentrations ( 2,OOOpprn), but at lower concentrations no effect on nematode mobility was observed. Oxamyl, on the other hand, was found to reduce the mobility of nematodes at concentrations down to 4 ppm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis was to study factors related to the development of Brassica juncea as a sustainable nematicide. Brassica juncea is characterized by the glycoside (glucosinolate) sinigrin. Various methods were developed for the determination of sinigrin in Brassica juncea tissue extracts. Sinigrin concentrations in plant tissues at various stages of growth were monitored. Sinigrin enzymatically breaks down into allylisothiocyanate (AITC). AITC is unstable in aqueous solution and degradation was studied in water and in soil. Finally, the toxicity of AITC against the root-lesion nematode (Pratylenchus penetrans) was determined. A method was developed to extract sinigrin from whole Brassica j uncea tissues. The optimal time of extraction wi th boiling phosphate buffer (0.7mM, pH=6.38) and methanol/water (70:30 v/v) solutions were both 25 minutes. Methanol/water extracted 13% greater amount of sinigrin than phosphate buffer solution. Degradation of sinigrin in boiling phosphate buffer solution (0.13%/minute) was similar to the loss of sinigrin during the extraction procedure. The loss of sinigrin from boiling methanol/water was estimated to be O.Ol%/minute. Brassica juncea extract clean up was accomplished by an ion-pair solid phase extraction (SPE) method. The recovery of sinigrin was 92.6% and coextractive impurities were not detected in the cleaned up extract. Several high performance liquid chromatography (HPLC) methods were developed for the determination of sinigrin. All the developed methods employed an isocratic mobile phase system wi th a low concentration of phosphate buffer solution, ammonium acetate solution or an ion-pair reagent solution. A step gradient system was also developed. The method involved preconditioning the analytical column with phosphate buffer solution and then switching the mobile phase to 100% water after sample injection.Sinigrin and benzyl-glucosinolate were both studied by HPLC particle beam negative chemical ionization mass spectrometry (HPLCPB- NCI-MS). Comparison of the mass spectra revealed the presence of fragments arising from the ~hioglucose moiety and glucosinolate side-chain. Variation in the slnlgrin concentration within Brassica juncea plants was studied (Domo and Cutlass cuItivars). The sinigrin concentration in the top three leaves was studied during growth of each cultivar. For Cutlass, the minimum (200~100~g/g) and maximum (1300~200~g/g) concentrations were observed at the third and seventh week after planting, respectively. For Domo, the minimum (190~70~g/g) and maximum (1100~400~g/g) concentrations were observed at the fourth and eighth week after planting, respectively. The highest sinigrin concentration was observed in flower tissues 2050±90~g/g and 2300±100~g/g for Cutlass and Domo cultivars, respectively. Physical properties of AITC were studied. The solubility of AITC in water was determined to be approximately 1290~g/ml at 24°C. An HPLC method was developed for the separation of degradation compounds from aqueous AITC sample solutions. Some of the degradation compounds identified have not been reported in the literature: allyl-thiourea, allyl-thiocyanate and diallyl-sulfide. In water, AITC degradation to' diallyl-thiourea was favored at basic pH (9.07) and degradation to diallyl-sulfide was favored at acidic pH (4 . 97). It wap necessary to amend the aqueous AITC sample solution with acetonitrile ?efore injection into the HPLC system. The acetonitrile amendment considerably improved AITC recovery and the reproducibility of the results. The half-life of aqueous AITC degradation at room temperature did not follow first-order kinetics. Beginning with a 1084~g/ml solution, the half-life was 633 hours. Wi th an ini tial AITC concentration of 335~g/ml the half-life was 865 hours. At 35°C the half-life AITC was 76+4 hours essentially independent of the iiisolution pH over the range of pH=4.97 to 9.07 (1000~g/ml). AITC degradation was also studied in soil at 35°C; after 24 hours approximately 75% of the initial AITC addition was unrecoverable by water extraction. The ECso of aqueous AITC against the root-lesion nematode (Pratylenchus penetrans) was determined to be approximately 20~g/ml at one hour exposure of the nematode to the test solution. The toxicological study was also performed with a myrosinase treated Brassica juncea extract. Myrosinase treatment of the Brassica juncea extract gave nearly quantitative conversion of sinigrin into AITC. The myrosinase treated extract was of the same efficacy as an aqueous AITC solution of equivalent concentration. The work of this thesis was focused upon understanding parameters relevant to the development of Brassica juncea as a sustainable nematicide. The broad range of experiments were undertaken in support of a research priority at Agriculture and Agri-Food Canada.