3 resultados para FOCAL CEREBRAL-ISCHEMIA
em Brock University, Canada
Resumo:
Intracerebroventricular (ICV) administration of bombesin (BN) induces a
syndrome characterized by stereotypic locomotion and grooming,
hyperactivity and sleep elimination, hyperglycemia and hypothermia,
hyperhemodynamics, feeding inhibition, and gastrointestinal function
changes. Mammalian BN-like peptides (MBNs), e.g. gastrin-releasing
peptide (GRP), Neuromedin C (NMC), and Neuromedin B (NMB), have been
detected in the central nervous system. Radio-labeled BN binds to specific
sites in discrete cerebral regions. Two specific BN receptor subtypes (GRP
receptor and NMB receptor) have been identified in numerous brain regions.
The quantitative 2-[14C]deoxyglucose ([14C]20G) autoradiographic
method was used to map local cerebral glucose utilization (LCGU) in the
rat brain following ICV injection of BN (vehicle, BN O.1Jlg, O.5Jlg). At each
dose, experiments were conducted in freely moving or restrained
conditions to determine whether alterations in cerebral function were the
result of BN central administration, or were the result of BN-induced
motor stereotypy. The anteroventral thalamic nucleus (AV) (p=O.029),
especially its ventrolateral portion (AVVL) (p
Resumo:
This thesis tested whether cognitive performance during passive heat stress may be affected by changes in cerebrovascular variables as opposed to strictly thermally-induced changes. A pharmacological reduction in cerebral blood flow (CBF) using indomethacin along with a hypocapnia-induced CBF reduction during passive heat stress (Tre ~1.5°C above baseline) were used to investigate any cerebrovascular-mediated changes in cognitive performance. Repeated measures analysis of variance indicated that One-Touch Stockings of Cambridge (OTS) performance was not affected by a significant reduction in CBF during passive heat stress. More specifically, OTS accuracy measures did not change as a result of either a reduction in CBF or increasing passive heat stress. However, it was found that OTS response time indices improved with increasing passive heat stress independent of CBF changes. In conclusion, a significant reduction in CBF does not cause additional changes in performance of an executive functioning task during severe passive heat stress.
Resumo:
Although reductions in cerebral blood flow (CBF) may be implicated in the development of central fatigue during environmental stress, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has yet to be isolated. The current research program examined the influence of CBF, with and without consequent hypocapnia, on neuromuscular responses during hypoxia and passive heat stress. To this end, neuromuscular responses, as indicated by motor evoked potentials (MEP), maximal M-wave (Mmax) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in three separate projects: 1) hypocapnia, independent of concomitant reductions in CBF; 2) altered CBF during severe hypoxia and; 3) thermal hyperpnea-mediated reductions in CBF, independent of hypocapnia. All projects employed a custom-built dynamic end-tidal forcing system to control end-tidal PCO2 (PETCO2), independent of the prevailing environmental conditions, and cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg·Kg-1) to selectively reduce CBF (estimated using transcranial Doppler ultrasound) without changes in PETCO2. A primary finding of the present research program is that the excitability of the corticospinal tract is inherently sensitive to changes in PaCO2, as demonstrated by a 12% increase in MEP amplitude in response to moderate hypocapnia. Conversely, CBF mediated reductions in cerebral O2 delivery appear to decrease corticospinal excitability, as indicated by a 51-64% and 4% decrease in MEP amplitude in response to hypoxia and passive heat stress, respectively. The collective evidence from this research program suggests that impaired voluntary activation is associated with reductions in CBF; however, it must be noted that changes in cVA were not linearly correlated with changes in CBF. Therefore, other factors independent of CBF, such as increased perception of effort, distress or discomfort, may have contributed to the reductions in cVA. Despite the functional association between reductions in CBF and hypocapnia, both variables have distinct and independent influence on the neuromuscular system. Therefore, future studies should control or acknowledge the separate mechanistic influence of these two factors.