4 resultados para rodents

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Choline supplementation improving memory functions in rodents is assumed to increase the synthesis and release of acetylcholine in the brain. We have found that a combined pre- and postnatal supplementation results in long-lasting facilitation of spatial memory in juvenile rats when training was conducted in presence of a local salient cue. The present work was aimed at analysing the effects of peri- and postnatal choline supplementation on spatial abilities of naive adult rats. Rats given a perinatal choline supplementation were trained in various cued procedures of the Morris navigation task when aged 5 months. The treatment had a specific effect of reducing the escape latency of the rats when the platform was at a fixed position in space and surrounded by a suspended cue. This effect was associated with an increased spatial bias when the cue and platform were removed. In this condition, the control rats showed impaired spatial discrimination following the removal of the target cue, most likely due to an overshadowing of the distant environmental cues. This impairment was not observed in the treated rats. Further training with the suspended cue at unpredictable places in the pool revealed longer escape latencies in the control than in the treated rats suggesting that this procedure induced a selective perturbation of the normal but not of the treated rats. A special probe trial with the cue at an irrelevant position and no escape platform revealed a significant bias of the control rats toward the cue and of the treated rats toward the uncued spatial escape position. This behavioural dissociation suggests that a salient cue associated with the target induces an alternative "non spatial" guidance strategy in normal rats, with the risk of overshadowing of the more distant spatial cues. In this condition, the choline supplementation facilities a spatial reliance on the cue, that is an overall facilitation of learning a set of spatial relations between several visual cues. As a consequence, the improved escape in presence of the cue is associated with a stronger memory of the spatial position following disappearance of the cue. This and previous observations suggest that a specific spatial attention process relies on the buffering of highly salient visual cues.to facilitate integration of their relative position in the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) plays a key role in adipocyte differentiation and insulin sensitivity. Its synthetic ligands, the thiazolidinediones (TZD), are used as insulin sensitizers in the treatment of type 2 diabetes. These compounds induce both adipocyte differentiation in cell culture models and promote weight gain in rodents and humans. Here, we report on the identification of a new synthetic PPARgamma antagonist, the phosphonophosphate SR-202, which inhibits both TZD-stimulated recruitment of the coactivator steroid receptor coactivator-1 and TZD-induced transcriptional activity of the receptor. In cell culture, SR-202 efficiently antagonizes hormone- and TZD-induced adipocyte differentiation. In vivo, decreasing PPARgamma activity, either by treatment with SR-202 or by invalidation of one allele of the PPARgamma gene, leads to a reduction of both high fat diet-induced adipocyte hypertrophy and insulin resistance. These effects are accompanied by a smaller size of the adipocytes and a reduction of TNFalpha and leptin secretion. Treatment with SR-202 also dramatically improves insulin sensitivity in the diabetic ob/ob mice. Thus, although we cannot exclude that its actions involve additional signaling mechanisms, SR-202 represents a new selective PPARgamma antagonist that is effective both in vitro and in vivo. Because it yields both antiobesity and antidiabetic effects, SR-202 may be a lead for new compounds to be used in the treatment of obesity and type 2 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last several years have seen an increasing number of studies that describe effects of oxytocin and vasopressin on the behavior of animals or humans. Studies in humans have reported behavioral changes and, through fMRI, effects on brain function. These studies are paralleled by a large number of reports, mostly in rodents, that have also demonstrated neuromodulatory effects by oxytocin and vasopressin at the circuit level in specific brain regions. It is the scope of this review to give a summary of the most recent neuromodulatory findings in rodents with the aim of providing a potential neurophysiological basis for their behavioral effects. At the same time, these findings may point to promising areas for further translational research towards human applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the wild, animals have developed survival strategies relying on their senses. The individual ability to identify threatening situations is crucial and leads to increase in the overall fitness of the species. Rodents, for example have developed in their nasal cavities specialized olfactory neurons implicated in the detection of volatile cues encoding for impending danger such as predator scents or alarm pheromones. In particular, the neurons of the Grueneberg ganglion (GG), an olfactory subsystem, are implicated in the detection of danger cues sharing a similar chemical signature, a heterocyclic sulfur- or nitrogen-containing motif. Here we used a "from the wild to the lab" approach to identify new molecules that are involuntarily emitted by predators and that initiate fear-related responses in the recipient animal, the putative prey. We collected urines from carnivores as sources of predator scents and first verified their impact on the blood pressure of the mice. With this approach, the urine of the mountain lion emerged as the most potent source of chemical stress. We then identified in this biological fluid, new volatile cues with characteristic GG-related fingerprints, in particular the methylated pyridine structures, 2,4-lutidine and its analogs. We finally verified their encoded danger quality and demonstrated their ability to mimic the effects of the predator urine on GG neurons, on mice blood pressure and in behavioral experiments. In summary, we were able to identify here, with the use of an integrative approach, new relevant molecules, the pyridine analogs, implicated in interspecies danger communication.