2 resultados para Volatile organic compounds

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In forensic investigation of firearm-related cases, determination of the residual amount of volatile compounds remaining inside a cartridge could be useful in estimating the time since its discharge. Published approaches are based on following the decrease of selected target compounds as a function of time by using solid phase micro-extraction (SPME). Naphthalene, as well as an unidentified decomposition product of nitrocellulose (referred to as "TEA2"), are usually employed for this purpose. However, reliability can be brought into question given their high volatility and the low reproducibility of their extracted quantities. In order to identify alternatives and therefore develop improved dating methods, an extensive study on the composition and variability of volatile residues in nine different types of cartridges was carried out. Analysis was performed using headspace sorptive extraction (HSSE), which is a more exhaustive technique compared to SPME. 166 compounds were identified (several of which for the first time), and it was observed that the final compositional characteristics of each residue were strongly dependent on its source. Variability of single identified compounds within and between different types of cartridge, as well as their evolution over time, was also studied. Many explosion products containing up to 4 aromatic rings were found to be globally present in high proportions amongst residues. 27 of them (excluding naphthalene) also presented detectable decreases during the first 24 h. Therefore, they could be used as complementary target analytes in future dating methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.