2 resultados para STROMAL CELLS

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: There is growing evidence that interaction between stromal and tumor cells is pivotal in breast cancer progression and response to therapy. Based on earlier research suggesting that during breast cancer progression, striking changes occur in CD10(+) stromal cells, we aimed to better characterize this cell population and its clinical relevance. EXPERIMENTAL DESIGN: We developed a CD10(+) stroma gene expression signature (using HG U133 Plus 2.0) on the basis of the comparison of CD10 cells isolated from tumoral (n = 28) and normal (n = 3) breast tissue. We further characterized the CD10(+) cells by coculture experiments of representative breast cancer cell lines with the different CD10(+) stromal cell types (fibroblasts, myoepithelial, and mesenchymal stem cells). We then evaluated its clinical relevance in terms of in situ to invasive progression, invasive breast cancer prognosis, and prediction of efficacy of chemotherapy using publicly available data sets. RESULTS: This 12-gene CD10(+) stroma signature includes, among others, genes involved in matrix remodeling (MMP11, MMP13, and COL10A1) and genes related to osteoblast differentiation (periostin). The coculture experiments showed that all 3 CD10(+) cell types contribute to the CD10(+) stroma signature, although mesenchymal stem cells have the highest CD10(+) stroma signature score. Of interest, this signature showed an important role in differentiating in situ from invasive breast cancer, in prognosis of the HER2(+) subpopulation of breast cancer only, and potentially in nonresponse to chemotherapy for those patients. CONCLUSIONS: Our results highlight the importance of CD10(+) cells in breast cancer prognosis and efficacy of chemotherapy, particularly within the HER2(+) breast cancer disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adaptive immunity is initiated in T-cell zones of secondary lymphoid organs. These zones are organized in a rigid 3D network of fibroblastic reticular cells (FRCs) that are a rich cytokine source. In response to lymph-borne antigens, draining lymph nodes (LNs) expand several folds in size, but the fate and role of the FRC network during immune response is not fully understood. Here we show that T-cell responses are accompanied by the rapid activation and growth of FRCs, leading to an expanded but similarly organized network of T-zone FRCs that maintains its vital function for lymphocyte trafficking and survival. In addition, new FRC-rich environments were observed in the expanded medullary cords. FRCs are activated within hours after the onset of inflammation in the periphery. Surprisingly, FRC expansion depends mainly on trapping of naïve lymphocytes that is induced by both migratory and resident dendritic cells. Inflammatory signals are not required as homeostatic T-cell proliferation was sufficient to trigger FRC expansion. Activated lymphocytes are also dispensable for this process, but can enhance the later growth phase. Thus, this study documents the surprising plasticity as well as the complex regulation of FRC networks allowing the rapid LN hyperplasia that is critical for mounting efficient adaptive immunity.