39 resultados para Conditional knockout mouse

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch proteins influence cell-fate decisions in many developmental systems. Gain-of-function studies have suggested a crucial role for Notch1 signaling at several stages during lymphocyte development, including the B/T, alphabeta/gammadelta and CD4/CD8 lineage choices. Here, we critically re-evaluate these conclusions in the light of recent studies that describe inducible and tissue-specific targeting of the Notch1 gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Melanoma antigen recognized by T cells 1 (MART-1) is a melanoma-specific antigen, which has been thoroughly studied in the context of immunotherapy against malignant melanoma and which is found only in the pigment cell lineage. However, its exact function and involvement in pigmentation is not clearly understood. Melanoma antigen recognized by T cells 1 has been shown to interact with the melanosomal proteins Pmel17 and OA1. To understand the function of MART-1 in pigmentation, we developed a new knockout mouse model. Mice deficient in MART-1 are viable, but loss of MART-1 leads to a coat color phenotype, with a reduction in total melanin content of the skin and hair. Lack of MART-1 did not affect localization of melanocyte-specific proteins nor maturation of Pmel17. Melanosomes of hair follicle melanocytes in MART-1 knockout mice displayed morphological abnormalities, which were exclusive to stage III and IV melanosomes. In conclusion, our results suggest that MART-1 is a pigmentation gene that is required for melanosome biogenesis and/or maintenance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key aspect of glucose homeostasis is the constant monitoring of blood glucose concentrations by specific glucose sensing units. These sensors, via stimulation of hormone secretion and activation of the autonomic nervous system (ANS), regulate tissue glucose uptake, utilization or production. The best described glucose detection system is that of the pancreatic beta-cells which controls insulin secretion. Secretion of other hormones, in particular glucagon, and activation of the ANS, are regulated by glucose through sensing mechanisms which are much less well characterized. Here I review some of the studies we have performed over the recent years on a mouse model of impaired glucose sensing generated by inactivation of the gene for the glucose transporter GLUT2. This transporter catalyzes glucose uptake by pancreatic beta-cells, the first step in the signaling cascade leading to glucose-stimulated insulin secretion. Inactivation of its gene leads to a loss of glucose sensing and impaired insulin secretion. Transgenic reexpression of the transporter in GLUT2/beta-cells restores their normal secretory function and rescues the mice from early death. As GLUT2 is also expressed in other tissues, these mice were then studied for the presence of other physiological defects due to absence of this transporter. These studies led to the identification of extra-pancreatic, GLUT2-dependent, glucose sensors controlling glucagon secretion and glucose utilization by peripheral tissues, in part through a control of the autonomic nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between metabolism and reactive oxygen species (ROS) production by the mitochondria has often been (wrongly) viewed as straightforward, with increased metabolism leading to higher generation of pro-oxidants. Insights into mitochondrial functioning show that oxygen consumption is principally coupled with either energy conversion as ATP or as heat, depending on whether the ATP-synthase or the mitochondrial uncoupling protein 1 (UCP1) is driving respiration. However, these two processes might greatly differ in terms of oxidative costs. We used a cold challenge to investigate the oxidative stress consequences of an increased metabolism achieved either by the activation of an uncoupled mechanism (i.e. UCP1 activity) in the brown adipose tissue (BAT) of wild-type mice or by ATP-dependent muscular shivering thermogenesis in mice deficient for UCP1. Although both mouse strains increased their metabolism by more than twofold when acclimatised for 4 weeks to moderate cold (12°C), only mice deficient for UCP1 suffered from elevated levels of oxidative stress. When exposed to cold, mice deficient for UCP1 showed an increase of 20.2% in plasmatic reactive oxygen metabolites, 81.8% in muscular oxidized glutathione and 47.1% in muscular protein carbonyls. In contrast, there was no evidence of elevated levels of oxidative stress in the plasma, muscles or BAT of wild-type mice exposed to cold despite a drastic increase in BAT activity. Our study demonstrates differing oxidative costs linked to the functioning of two highly metabolically active organs during thermogenesis, and advises careful consideration of mitochondrial functioning when investigating the links between metabolism and oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammalian circadian clockwork, the CLOCK-BMAL1 complex binds to DNA enhancers of target genes and drives circadian oscillation of transcription. Here we identified 7,978 CLOCK-binding sites in mouse liver by chromatin immunoprecipitation-sequencing (ChIP-Seq), and a newly developed bioinformatics method, motif centrality analysis of ChIP-Seq (MOCCS), revealed a genome-wide distribution of previously unappreciated noncanonical E-boxes targeted by CLOCK. In vitro promoter assays showed that CACGNG, CACGTT, and CATG(T/C)G are functional CLOCK-binding motifs. Furthermore, we extensively revealed rhythmically expressed genes by poly(A)-tailed RNA-Seq and identified 1,629 CLOCK target genes within 11,926 genes expressed in the liver. Our analysis also revealed rhythmically expressed genes that have no apparent CLOCK-binding site, indicating the importance of indirect transcriptional and posttranscriptional regulations. Indirect transcriptional regulation is represented by rhythmic expression of CLOCK-regulated transcription factors, such as Krüppel-like factors (KLFs). Indirect posttranscriptional regulation involves rhythmic microRNAs that were identified by small-RNA-Seq. Collectively, CLOCK-dependent direct transactivation through multiple E-boxes and indirect regulations polyphonically orchestrate dynamic circadian outputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé L'accident vasculaire cérébral sensoriel pur est un des syndromes lacunaires, dû à l'occlusion de petits vaisseaux cérébraux, souvent dans le cadre d'une lésion intéressant le noyau ventro-caudal du thalamus. Il produit un hémisyndrome sensitif pur, et parfois un syndrome douloureux se développe à distance de l'événement aigu. Afin d'étudier la récupération fonctionnelle dans le cortex somatosensoriel (SI) après une telle lésion dans le thalamus, un modèle de lésion excitotoxique a été développé dans le système somatosensoriel de la souris adulte, caractérisé par la présence de formations cytoarchitectoniques dans SI appelées "tonneaux". Chacun de ces tonneaux correspond à la représentation corticale d'une vibrisse du museau. L'activité métabolique a été mesurée dans SI à différents intervalles après la lésion, à l'aide de déoxyglucose marqué radioactivement. Dans les deux premiers jours suivant celle-ci, l'activité métabolique diminue de manière importante dans toutes les couches corticales, avec une atteinte plus marquée dans la couche IV, principale projection des axones thalamo-corticaux. Une récupération de l'activité métabolique se produit ensuite, d'autant plus marquée que le délai après la lésion est grand. Cette récupération s'observe dans toutes les couches coticales, les couches I et Vb récupérant plus rapidement que les couches II, III, IV, Va et VI. Cinq semaines après la lésion, l'absence des vibrisses correspondant à la partie déafférentée de SI diminue l'activité métabolique corticale de 32% et démontre l'activation par la périphérie de cette partie de l'écorce, malgré la perte des axones thalamo-corticaux provenant du noyau ventro-caudal. Des expériences de traçage rétrograde ont montré une augmentation des projections intracorticales sur la partie déafférentée de l'écorce, en particulier de longue distance, ainsi que des projections interhémisphériques, mais n'ont pas permis de mettre en évidence de nouvelle projection thalamique, indiquant une origine corticale à la récupération fonctionnelle observée. Abstract To study the degree and time course of the functional recovery in the somatosensory cortex (SI) after an excitotoxic lesion in the adult mouse thalamus, metabolic activity was determined in SI at various times points post lesion. Immediately after the lesion, metabolic activity in the thalamically deafferented part of SI was at its lowest value but increased progressively at subsequent time points. This was seen in all cortical layers, however, layers I and Vb recover more rapidly than layers II, III, IV, Va and VI. Removal of the mystacial whiskers corresponding to the deafferented area, 5 weeks after cortical recovery, produced a subsequent 32% drop in metabolic activity, demonstrating peripheral sensory activation of this part of the cortex. Tracing experiments revealed that the deafferented cortex did not receive a novel thalamic input, but cortico-cortical and contralateral barrel cortex projections to this area were reinforced. We conclude that the cortical functional recovery after a thalamic lesion is, at least partially, due to modified cortico-cortical and callosal projections to the deafferented cortical area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation can promote or inhibit cancer progression. In this study we have addressed the role of the proinflammatory cytokine thymic stromal lymphopoietin (TSLP) during skin carcinogenesis. Using conditional loss- and gain-of-function mouse models for Notch and Wnt signaling, respectively, we demonstrate that TSLP-mediated inflammation protects against cutaneous carcinogenesis by acting directly on CD4 and CD8 T cells. Genetic ablation of TSLP receptor (TSLPR) perturbs T-cell-mediated protection and results in the accumulation of CD11b(+)Gr1(+) myeloid cells. These promote tumor growth by secreting Wnt ligands and augmenting β-catenin signaling in the neighboring epithelium. Epithelial specific ablation of β-catenin prevents both carcinogenesis and the accumulation of CD11b(+)Gr1(+) myeloid cells, suggesting tumor cells initiate a feed-forward loop that induces protumorigenic inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the common assumption that orthologs usually share the same function, there have been various reports of divergence between orthologs, even among species as close as mammals. The comparison of mouse and human is of special interest, because mouse is often used as a model organism to understand human biology. We review the literature on evidence for divergence between human and mouse orthologous genes, and discuss it in the context of biomedical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary : The hypothalamus represents less than 1 % of the total volume of the brain tissue, yet it plays a crucial role in endocrine regulations. Puberty is defined as a process leading to physical, sexual and psychosocial maturation. The hypothalamus is central to this process, via the activation of GnRH neurons. Pulsatile GnRH secretion, minimal during childhood, increases with the onset of puberty. The primary function of GnRH is to regulate the growth, development and function of testes in boys and ovaries in girls, by stimulating the pituitary gland secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Several factors contribute to the timing of puberty, including sex and ethnicity, genetics, dietary intake and energy expenditure. Kisspeptins constitute a family of small peptides arising from the proteolytic cleavage of metastin, a peptide with 54 amino acids initially purified from human placenta. These kisspeptins were the subject of much attention following their discovery because of their antimetastatic properties, but it was more recently that their determining role in the reproductive function was demonstrated. It was shown that kisspeptins are ligands of a receptor, GPR54, whose natural inactivating mutation in humans, or knockout in the mouse, lead to infertility. GnRH neurons play a pivotal role in the central regulation of fertility. Kisspeptin greatly increases GnRH release and GnRH neuron firing activity, but the neurobiological mechanisms for these actions are unknown. Gprotein-coupled receptor 54, the receptor for kisspeptin, is expressed by GnRH neurons as well as other hypothalamic neurons, suggesting that both direct and indirect effects are possible. In the first part of my thesis, we investigated a possible connection between the acceleration of sexual development induced by leptin and hypothalamic metastin neurons. However, the data generated by our preliminary experiments confirmed that the commercially available antibodies are non-specific. This finding constituted a major drawback for our studies, which relied heavily upon the neuroanatomical study of the hypothalamic metastinergic pathways to elucidate their sensitivity to exogenous leptin. Therefore, we decided to postpone any further in vivo experiment until a better antibody becomes available, and focused on in vitro studies to better understand the mechanisms of action of kisspeptins in the modulation of the activity of GnRH neurons. We used two GnRH-expressing neuronal cell lines to investigate the cellular and molecular mechanisms of action of metastin in GnRH neurons. We demonstrated that kisspeptin induces an early activation of the MAP kinase intracellular signaling pathway in both cell lines, whereas the SAP/JNK or the Akt pathways were unaffected. Moreover, we found an increase in GnRH mRNA levels after 6h of metastin stimulation. Thus, we can conclude that kisspeptin regulates GnRH neurons both at the secretion and the gene expression levels. The MAPK pathway is the major pathway activated by metastin in GnRH expressing neurons. Taken together, these data provide the first mechanism of action of kisspeptin on GnRH neurons. Résumé : L'hypothalamus est une zone située au centre du cerveau, dont il représente moins de 1 du volume total. La puberté est la période de transition entre l'enfance et l'age adulte, qui s'accompagne de transformations somatiques, psychologiques, métaboliques et hormonales conduisant à la possibilité de procréer. La fonction principale de la GnRH est la régulation de la croissance, du développement et de la fonction des testicules chez les hommes, et des ovaires chez les femmes en stimulant la sécrétion de l'hormone lutéinisante (LH) et de l'hormone folliculostimulante (FSH) par la glande hypophysaire. Plusieurs facteurs contribuent au déclanchement de la puberté, y compris le sexe et l'appartenance ethnique, la génétique, l'apport alimentaire et la dépense énergétique. Les Kisspeptines constituent une famille de peptides résultant de la dissociation proteolytique de la métastine, un peptide de 54 acides aminés initialement purifié à partir de placenta humain. Ces kisspeptines ont fait l'objet de beaucoup d'attention à la suite de leur découverte en raison de leurs propriétés anti-metastatiques, et c'est plus récemment que leur rôle déterminant dans la fonction reproductive a été démontré. Les kisspeptines sont des ligands du récepteur GPR54, dont la mutation inactivatrice chez l'homme, ou le knockout chez la souris, conduisent à l'infertilité par hypogonadisme hypogonadotrope. Les neurones à GnRH jouent un rôle central dans le règlement des fonctions reproductrices et la kisspeptine stimule l'activité des neurones à GnRH et la libération de GnRH par ces neurones. Toutefois, les mécanismes neurobiologiques de ces actions ne sont pas connus. Dans la première partie de ma thèse, nous avons étudié le lien potentiel entre l'accélération du développement sexuel induite par la leptine et les neurones hypothalamiques à metastine. Les données générées dans cette première série d'expériences ont malheureusement confirmé que les anticorps anti-metastine disponibles dans le commerce sont aspécifiques. Ceci a constitué un inconvénient majeur pour nos études, qui devaient fortement s'appuyer sur l' étude neuroanatomique des neurones hypothalamiques à metastine pour évaluer leur sensibilité à la leptine exogène. Nous avons donc décidé de focaliser nos travaux sur une étude in vitro des mécanismes d'action de la kisspeptine pour moduler l'activité des neurones à GnRH. Nous avons utilisé deux lignées de cellules neuronales exprimant la GnRH pour étudier les mécanismes d'action cellulaires et moléculaires de la metastine dans des neurones. Nous avons ainsi pu démontrer que la kisspeptine induit une activation précoce de la voie f de signalisation de la MAP kinase dans les deux lignées cellulaires, alors que nous n'avons observé aucune activation de la voie de signalisation de la P13 Kinase et de la SAP/JNK. Nous avons en outre démontré une augmentation de l'expression de la GnRH par la stimulation avec la Kisspeptine. L'ensemble de ces données contribue à élucider le mécanisme d'action avec lequel la kisspeptine agit dans les neurones à GnRH, en démontrant un effet sur l'expression génique de la GnRH. Nous pouvons également conclure que la voie de la MAPK est la voie principale activée par la metastine dans les neurones exprimant la GnRH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.