2 resultados para Soft tissue infections

em Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soft-tissue and bone necrosis, although rare in childhood, occasionally occur in the course of infectious diseases, either viral or bacterial, and seem to be the result of hypoperfusion on a background of disseminated intravascular coagulation. Treatment consists in correction of septic shock and control of necrosis. Necrosis, once started, shows extraordinarily rapid evolution, leading to soft-tissue and bone destruction and resulting in anatomic, functional, psychological, and social handicaps. Ten mutilated children were treated from January 1986 to January 1999 in Hospital de Dona Estefaˆ nia, Lisbon, Portugal. One was recovering from hemolytic-uremic syndrome with a severe combined immunodeficiency, another malnourished, anemic child had malaria, and three had chicken pox (in one case complicated by meningococcal septicemia). There were three cases of meningococcal and two of pyocyanic septicemia (one in a burned child and one in a patient with infectious mononucleosis). The lower limbs (knee,leg, foot) were involved in five cases, the face (ear, nose, lip) in four, the perineum in three, the pelvis (inguinal region, iliac crest) in two, the axilla in one, and the upper limb (radius, hand) in two. Primary prevention is based on early recognition of risk factors and timely correction. Secondary prevention consists of immediate etiologic and thrombolytic treatment to restrict the area of necrosis. Tertiary prevention relies on adequate rehabilitation with physiotherapy and secondary operations to obtain the best possible functional and esthetic result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To access the incidence of infectious problems after liver transplantation (LT). Design. A retrospective, single-center study. Materials and Methods. Patients undergoing LT from January 2008 to December 2011 were considered. Exclusion criterion was death occurring in the first 48 hours after LT. We determined the site of infection and the bacterial isolates and collected and compared recipient’s variables, graft variables, surgical data, post-LT clinical data. Results. Of the 492 patients who underwent LT and the 463 considered for this study, 190 (Group 1, 41%) developed at least 1 infection, with 298 infections detected. Of these, 189 microorganisms were isolated, 81 (51%) gram-positive bacteria (most frequently Staphylococcus spp). Biliary infections were more frequent (mean time of 160.4 167.7 days after LT); from 3 months after LT, gram-negative bacteria were observed (57%). Patients with infections after LT presented lower aminotransferase levels, but higher requirements in blood transfusions, intraoperative vasopressors, hemodialysis, and hospital stay. Operative and cold ischemia times were similar. Conclusion. We found a 41% incidence of all infections in a 2-year follow-up after LT. Gram-positive bacteria were more frequent isolated; however, negative bacteria were commonly isolated later. Clinical data after LT were more relevant for the development of infections. Donors’ variables should be considered in future analyses.