5 resultados para Neural Control Systems
em Instituto Politécnico do Porto, Portugal
Resumo:
This article aims to apply the concepts associated with artificial neural networks (ANN) in the control of an autonomous robot system that is intended to be used in competitions of robots. The robot was tested in several arbitrary paths in order to verify its effectiveness. The results show that the robot performed the tasks with success. Moreover, in the case of arbitrary paths the ANN control outperforms other methodologies, such as fuzzy logic control (FLC).
Resumo:
This article presents a novel method for visualizing the control systems behavior. The proposed scheme uses the tools of fractional calculus and computes the signals propagating within the system structure as a time/frequency-space wave. Linear and nonlinear closed-loop control systems are analyzed, for both the time and frequency responses, under the action of a reference step input signal. Several nonlinearities, namely, Coulomb friction and backlash, are also tested. The numerical experiments demonstrate the feasibility of the proposed methodology as a visualization tool and motivate its extension for other systems and classes of nonlinearities.
Resumo:
Animal locomotion is a complex process, involving the central pattern generators (neural networks, located in the spinal cord, that produce rhythmic patterns), the brainstem command systems, the steering and posture control systems and the top layer structures that decide which motor primitive is activated at a given time. Pinto and Golubitsky studied an integer CPG model for legs rhythms in bipeds. It is a four-coupled identical oscillators' network with dihedral symmetry. This paper considers a new complex order central pattern generator (CPG) model for locomotion in bipeds. A complex derivative Dα±jβ, with α, β ∈ ℜ+, j = √-1, is a generalization of the concept of an integer derivative, where α = 1, β = 0. Parameter regions where periodic solutions, identified with legs' rhythms in bipeds, occur, are analyzed. Also observed is the variation of the amplitude and period of periodic solutions with the complex order derivative.
Resumo:
Proceedings of the 10th Conference on Dynamical Systems Theory and Applications
Resumo:
Neste documento descreve-se o projeto desenvolvido na unidade curricular de Tese e Dissertação durante o 2º ano do Mestrado de Engenharia Eletrotécnica e de Computadores no ramo de Automação e Sistemas, no Departamento de Engenharia Eletrotécnica (DEE) do Instituto Superior de Engenharia do Porto (ISEP). O projeto escolhido teve como base o uso da tecnologia das redes neuronais para implementação em sistemas de controlo. Foi necessário primeiro realizar um estudo desta tecnologia, perceber como esta surgiu e como é estruturada. Por último, abordar alguns casos de estudo onde as redes neuronais foram aplicadas com sucesso. Relativamente à implementação, foram consideradas diferentes estruturas de controlo, e entre estas escolhidas a do sistema de controlo estabilizador e sistema de referência adaptativo. No entanto, como o objetivo deste trabalho é o estudo de desempenho quando aplicadas as redes neuronais, não se utilizam apenas estas como controlador. A análise exposta neste trabalho trata de perceber em que medida é que a introdução das redes neuronais melhora o controlo de um processo. Assim sendo, os sistemas de controlo utilizados devem conter pelo menos uma rede neuronal e um controlador PID. Os testes de desempenho são aplicados no controlo de um motor DC, sendo realizados através do recurso ao software MATLAB. As simulações efetuadas têm diferentes configurações de modo a tirar conclusões o mais gerais possível. Assim, os sistemas de controlo são simulados para dois tipos de entrada diferentes, e com ou sem a adição de ruído no sensor. Por fim, é efetuada uma análise das respostas de cada sistema implementado e calculados os índices de desempenho das mesmas.