4 resultados para Poultry health

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural workers especially poultry farmers are at increased risk of occupational respiratory diseases. Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers. In poultry production volatile organic compounds (VOCs) presence can be due to some compounds produced by molds that are volatile and are released directly into the air. These are known as microbial volatile organic compounds (MVOCs). Because these compounds often have strong and/or unpleasant odors, they can be the source of odors associated with molds. MVOC's are products of the microorganisms primary and secondary metabolism and are composed of low molecular weight alcohols, aldehydes, amines, ketones, terpenes, aromatic and chlorinated hydrocarbons, and sulfur-based compounds, all of which are variations of carbon-based molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction - Feed supplies the necessary nutrients for the growth of healthy animals, which are a part of the human diet. The presence of toxigenic fungi in animal feed such as Aspergillus spp. may contribute to 1) the loss of nutritional value of feedstuff, since fungi will assimilate the most readily available nutrients present in the feed, and 2) the development of mycotoxicoses and chronic conditions, which can raise economic issues due to animal disease and contamination of animal derived products. Aim of the study - The goal of this work was to evaluate the incidence of Aspergilli, particularly from the Circumdati, Flavi and Fumigati sections, through real-time quantitative PCR (qPCR) in 11 feed samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feed can easily be contaminated and colonized by fungi that use up the nutrients for their own metabolism and growth, producing secondary metabolites such as mycotoxins that are not eliminated throughout the feed processing. The major problems associated with mycotoxin contaminated animal feed are metabolic disturbances resulting in poor animal productivity. In addition, handling contaminated animal feed can also raise health issues regarding workers exposure to fungi and mycotoxins. The scope of this work was to characterize fungal distribution in 11 poultry feed samples. Twenty grams of feed were suspended in 180 mL of distilled water and homogenized during 20 minutes at 200 rpm. The washed supernatant was plated in malt extract agar (MEA) and dichloran glycerol agar base (DG18) media for morphological identification of the mycobiota present. Using macro- and microscopic analysis of the colonies, fungal contamination was evident in 72.7% of the analyzed poultry feed samples. Fungal load ranged from 0 to 13140 CFU/g, and the most prevalent species/genera were F. graminearum complex (71.1%), Penicillium sp. (11.6%), Cladosporium sp. (8.8%), and Fusarium poae (3.6%). In addition to these species, we also isolated Aspergillus sections Circumdati, Nigri and Aspergilli, and Mucor and Rhizopus genus albeit at a lower abundance. The data obtained showed that, besides high fungal contamination, mycotoxins contamination is probably a reality, particularly in the final product since mycotoxins resist to all the processing operations including thermal treatment. Additionally, data claimed attention for the probable co-exposure to fungi and mycotoxins of the workers in feed industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Health effects resulting from dust inhalation in occupational environments may be more strongly associated with specific microbial components, such as fungi, than to the particles. The aim of the present study is to characterize the occupational exposure to the fungal burden in four different occupational settings (two feed industries, one poultry and one waste sorting industry), presenting results from two air sampling methods – the impinger collector and the use of filters. In addition, the equipment used for the filter sampling method allowed a more accurate characterization regarding the dimension of the collected fungal particles (less than 2.5 μm size). Air samples of 300L were collected using the impinger Coriolis μ air sampler. Simultaneously, the aerosol monitor (DustTrak II model 8532, TSI®) allowed assessing viable microbiological material below the 2.5 μm size. After sampling, filters were immersed in 300 mL of sterilized distilled water and agitated for 30 min at 100 rpm. 150 μl from the sterilized distilled water were subsequently spread onto malt extract agar (2%) with chloramphenicol (0.05 g/L). All plates were incubated at 27.5 ºC during 5–7 days. With the impinger method, the fungal load ranged from 0 to 413 CFU.m-3 and with the filter method, ranged from 0 to 64 CFU.m-3. In one feed industry, Penicillium genus was the most frequently found genus (66.7%) using the impinger method and three more fungi species/genera/complex were found. The filter assay allowed the detection of only two species/genera/complex in the same industry. In the other feed industry, Cladosporium sp. was the most found (33.3%) with impinger method and three more species/genera/complex were also found. Through the filter assay four fungi species/genera/complex were found. In the assessed poultry, Rhyzopus sp. was the most frequently detected (61.2%) and more three species/genera/complex were isolated. Through the filter assay, only two fungal species/genera/complex were found. In the waste sorting industry Penicillium sp. was the most prevalent (73.6%) with the impinger method, being isolated two more different fungi species/genera/complex. Through the filter assay only Penicillium sp. was found. A more precise determination of occupational fungal exposure was ensured, since it was possible to obtain information regarding not only the characterization of fungal contamination (impinger method), but also the size of dust particles, and viable fungal particles, that can reach the worker ́s respiratory tract (filters method). Both methods should be used in parallel to enrich discussion regarding potential health effects of occupational exposure to fungi.