3 resultados para nephrotoxicity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tenofovir disoproxil fumarate (TDF) is a first-line drug used in patients with highly active retroviral disease; however, it can cause renal failure associated with many tubular anomalies that may be due to down regulation of a variety of ion transporters. Because rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist induces the expression of many of these same transporters, we tested if the nephrotoxicity can be ameliorated by its use. High doses of TDF caused severe renal failure in rats accompanied by a reduction in endothelial nitric-oxide synthase and intense renal vasoconstriction; all of which were significantly improved by rosiglitazone treatment. Low-dose TDF did not alter glomerular filtration rate but produced significant phosphaturia, proximal tubular acidosis, polyuria and a reduced urinary concentrating ability. These alterations were caused by specific downregulation of the sodium-phosphorus cotransporter, sodium/hydrogen exchanger 3 and aquaporin 2. A Fanconi`s-like syndrome was ruled out as there was no proteinuria or glycosuria. Rosiglitazone reversed TDF-induced tubular nephrotoxicity, normalized urinary biochemical parameters and membrane transporter protein expression. These studies suggest that rosiglitazone treatment might be useful in patients presenting with TFV-induced nephrotoxicity especially in those with hypophosphatemia or reduced glomerular filtration rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alexandre CS, Braganca AC, Shimizu MH, Sanches TR, Fortes MA, Giorgi RR, Andrade L, Seguro AC. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression. Am J Physiol Renal Physiol 297: F916-F922, 2009. First published August 5, 2009; doi:10.1152/ajprenal.90256.2008.-Sirolimus, an antiproliferative immunosuppressant, induces hypomagnesemia and hypokalemia. Rosiglitazone activates renal sodiumand water-reabsorptive pathways. We evaluated whether sirolimus induces renal wasting of magnesium and potassium, attempting to identify the tubule segments in which this occurs. We tested the hypothesis that reduced expression of the cotransporter NKCC2 forms the molecular basis of this effect and evaluated the possible association between increased urinary excretion of magnesium and renal expression of the epithelial Mg(2+) channel TRPM6. We then analyzed whether rosiglitazone attenuates these sirolimus-induced tubular effects. Wistar rats were treated for 14 days with sirolimus (3 mg/kg body wt in drinking water), with or without rosiglitazone (92 mg/kg body wt in food). Protein abundance of NKCC2, aquaporin2 (AQP2), and TRPM6 was assessed using immunoblotting. Sirolimus-treated animals presented no change in glomerular filtration rate, although there were marked decreases in plasma potassium and magnesium. Sirolimus treatment reduced expression of NKCC2, and this was accompanied by greater urinary excretion of sodium, potassium, and magnesium. In sirolimus-treated animals, AQP2 expression was reduced. Expression of TRPM6 was increased, which might represent a direct stimulatory effect of sirolimus or a compensatory response. The finding that rosiglitazone prevented or attenuated all sirolimus-induced renal tubular defects has potential clinical implications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphotericin B (AmB) is widely used in the treatment of systemic fungal infections, despite its toxic effects. Nephrotoxicity, ascribed as the most serious toxic effect, has been related to the state of aggregation of the antibiotic. In search of the increase in AmB antifungal activity associated with low toxicity, several AmB-amphiphile formulations have been proposed. This work focuses on the structural characterization of a specific AmB formulation: AmB associated with sonicated dioctadecyl dimethylammonium bromide (DODAB) aggregates. Here, it was confirmed that sonicated DODAB dispersion is constituted by DODAB bicelles, and that monomeric AmB is much more soluble in bicelles than in DODAB vesicles. A new optical parameter is proposed for the estimation of the relative amount of amphiphile-bound monomeric AmB. With theoretical simulations of the spectra of spin labels incorporated in DODAB bicelles it was possible to prove that monomeric AmB binds preferentially to lipids located at the edges of DODAB bicelles, rigidifying them, and decreasing the polarity of the region. That special binding of monomeric AmB along the borders of bicelles, where the lipids are highly disorganized, could be used in the formulation of other carriers for the antibiotic, including mixtures of natural lipids which are known to form bicelles. (C) 2011 Elsevier B.V. All rights reserved.