21 resultados para adenosine

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension can result from neuronal network imbalance in areas of central nervous system that control blood pressure, such as the nucleus tractus solitarius (NTS). There are several neurotransmitters and neuromodulatory substances within the NTS, such as adenosine, which acts on purinoreceptors A(2a) (A(2a)R). The A(2a)R modulates neurotransmission in the NTS where its activation may induce decrease in blood pressure by different mechanisms. Nicotine is a molecule that crosses the hematoencephalic barrier and acts in several areas of central nervous system including the NTS, where it may interact with some neurotransmitter systems and contributes to the development of hypertension in subjects with genetic predisposition to this disease. In this study we first determined A(2a)R binding, protein, and mRNA expression in dorsomedial medulla oblongata of neonate normotensive (WKY) and spontaneously hypertensive rats (SHR). Subsequently, we analyzed the modulatory effects of nicotine on A(2a)R in cell culture in order to evaluate its possible involvement in the development of hypertension. Data showed a decreased A(2a)R binding and increased protein and mRNA expression in tissue sample and culture of dorsal brainstem from SHR compared with those from WKY rats at basal conditions. Moreover, nicotine modulated A(2a)R binding, protein, and mRNA expression in cells from both strains. Interestingly, nicotine decreased A(2a)R binding and increased protein levels, as well as, induced a differential modulation in A(2a)R mRNA expression. Results give us a clue about the mechanisms involved in the modulatory effects of nicotine on A(2a)R as well as hypothesize its possible contribution to the development of hypertension. In conclusion, we demonstrated that A(2a)R of SHR cells which differ from WKY and nicotine differentially modulates A(2a)R in dorsal brainstem cells of SHR and WKY.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine acts in the nucleus tractus solitarii (NTS), one of the main brain sites related to cardiovascular control. In the present study we show that A(1) adenosine receptor (A(1R)) activation promotes an increase on alpha(2)-adrenoceptor (Alpha(2R)) binding in brainstem cell culture from newborn rats. We investigated the intracellular cascade involved in such modulatory process using different intracellular signaling molecule inhibitors as well as calcium chelators. Phospholipase C, protein kinase Ca(2+)-dependent, IP(3) receptor and intracellular calcium were shown to participate in A(1R)/Alpha(2R) interaction. In conclusion, this result might be important to understand the role of adenosine within the NTS regarding autonomic cardiovascular control. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows the distribution and density of adenosine A1 receptor (A(1)R) within the nucleus tractus solitarii (NTS) of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) from birth to adulthood (1, 15, 30 and 90 days old). The NTS shows heterogeneous distribution of A(1)R in dorsomedial/dorsolateral, subpostremal and medial/intermediate subnuclei. A(1)R decrease from rostral to caudal within dorsomedial/dorsolateral subnucleus in 15-, 30- and 90-day-old WKY and SHR. A(1)R increase from rostral to caudal subpostremal subnucleus in 30- and 90-day-old WKY, and in 15-, 30- and 90-day-old SHR. Furthermore, A(1)Rs are increased in SHR as compared with WKY within dorsomedial/dorsolateral in 30- and 90-day-old and within subpostremal of 15-, 30- and 90-day-old rats. Finally, A(1)Rs increase from 1- to 30-day-old rats. Medial/intermediate did not show any changes in A(1)R from rostral to caudal levels, age or strain. In summary, our result highlights the importance of A1 adenosine system regarding the neural control of blood pressure and the development of hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was undertaken to evaluate changes in the activity of adenosine deaminase (ADA) in brains of rats infected by Trypanosoma evansi. Each rat was intraperitoneally infected with 10(6) trypomastigotes either suspended in fresh (group A; n = 13) and cryopreserved blood (group B; n = 13). Thirteen animals were used as control (group C). ADA activity was estimated in the cerebellum, cerebral cortex, striatum and hippocampus. No differences (P > 0.05) in ADA activity were observed in the cerebellum between infected and non-infected animals. Significant (P < 0.05) reductions in ADA activity occurred in cerebral cortex in acutely (day 4 post-infection; PI) and chronically (day 20 PI) infected rats. ADA activity was significantly (P < 0.05) decreased in the hippocampus in acutely infected rats, but significantly (P < 0.05) increased in the chronically infected rats. Significant (P < 0.05) reductions in ADA activity occurred in the striatum of chronically infected rats. Parasites could be found in peripheral blood and brain tissue through microscopic examination and PCR assay, respectively, in acutely and chronically infected rats. The reduction of ADA activity in the brain was associated with high levels of parasitemia and anemia in acute infections. Alterations in ADA activity of the brain in T. evansi-infected rats may have implications for pathogenesis of the disease. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine Is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A, receptors (A(1R)) on alpha(2)-adrenoceptors (Adr(2R)) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (B(max), K(d)) In the presence of 3 different concentrations of N(6)-cyclopentyladenosine (CPA), an A(1R) agonist. Neuronal culture confirmed our radioautographic results. [(3)H]RX821002, an Adr(2R) antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in B(max) values (21%) Induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by I nmol/L (increased B(max), 17%; decreased K(d), 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an Increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an AIR antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A(1R) that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important In understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension. (Hypertens Res 2008; 31: 2177-2186)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oocyte maturation is a long process during which oocytes acquire their intrinsic ability to support the subsequent stages of development in a stepwise manner, ultimately reaching activation of the embryonic genome. This process involves complex and distinct, although linked, events of nuclear and cytoplasmic maturation. Nuclear maturation mainly involves chromosomal segregation, whereas cytoplasmic maturation involves organelle reorganization and storage of mRNAs, proteins and transcription factors that act in the overall maturation process, fertilization and early embryogenesis. Thus, for didactic purposes, we subdivided cytoplasmic maturation into: (1) organelle redistribution, (2) cytoskeleton dynamics, and (3) molecular maturation. Ultrastructural analysis has shown that mitochondria, ribosomes, endoplasmic reticulum, cortical granules and the Golgi complex assume different positions during the transition from the germinal vesicle stage to metaphase II. The cytoskeletal microfilaments and microtubules present in the cytoplasm promote these movements and act on chromosome segregation. Molecular maturation consists of transcription, storage and processing of maternal mRNA, which is stored in a stable, inactive form until translational recruitment. Polyadenylation is the main mechanism that initiates protein translation and consists of the addition of adenosine residues to the 3` terminal portion of mRNA. Cell cycle regulators, proteins, cytoplasmic maturation markers and components of the enzymatic antioxidant system are mainly transcribed during this stage. Thus, the objective of this review is to focus on the cytoplasmic maturation process by analyzing the modifications in this compartment during the acquisition of meiotic competence for development. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proline-specific dipeptidyl peptidases are emerging as a protease family with important roles in the regulation of signaling by peptide hormones related to energy balance. The treatment of neonatal rats with monosodium glutamate (MSG) is known to produce a selective damage on the arcuate nucleus with development of obesity. This study investigates the relationship among dipeptidyl peptidase IV (DPPIV) hydrolyzing activity, CD26 protein, fasting, and MSG model of obesity in 2 areas of the central nervous system. Dipeptidyl peptidase IV and CD26 were, respectively, evaluated by fluorometry, and enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction in soluble (SF) and membrane-bound (MF) fractions from the hypothalamus and hippocampus of MSG-treated and normal rats, submitted or not to food deprivation (FD). Dipeptidyl peptidase IV in both areas was distinguished kinetically as insensitive (DI) and sensitive (DS) to diprotin A. Compared with the controls, MSG and/or FD decreased the activity of DPPIV-DI in the SF and MF from the hypothalamus, as well as the activity of DPPIV-DS in the SF from the hypothalamus and in the MF from the hippocampus. Monosodium glutamate and/or FD increased the activity of DPPIV-DI in the MF from the hippocampus. The monoclonal protein expression of membrane CD26 by enzyme-linked immunosorbent assay decreased in the hypothalamus and increased in the hippocampus of MSG and/or FD relative to the controls. The existence of DPPIV-like activity with different sensitivities to diprotin A and the identity of insensitive with CD26 were demonstrated for the first time in the central nervous system. Data also demonstrated the involvement of DPPIV-DI/CD26 hydrolyzing activity in the energy balance probably through the regulation of neuropeptide Y and beta-endorphin levels in the hypothalamus and hippocampus. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of ATP, ADP, and adenosine in the processes of platelet aggregation, vasodilatation, and coronary flow have been known for many years. The sequential hydrolysis of ATP to adenosine by soluble nucleotidases constitutes the main system for rapid inactivation of circulating adenine nucleotides. Thyroid disorders affect a number of biological factors including adenosine levels in different fractions. Then, we intend to investigate if the soluble nucleotidases responsible for the ATP, ADP, and AMP hydrolysis are affected by variations in the thyroid hormone levels in blood serum from adult rats. Hyperthyroidism was induced by daily intraperitoneal injections of L-thyroxine (T4) (2.5 and 10.0 mu g/100 g body weight, respectively) for 7 or 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water during 7 or 14 days. The treatments efficacy was confirmed by determination of hemodynamic parameters and cardiac hypertrophy evaluation. T4 treatment predominantly inhibited, and hypothyroidism (14 days after thyroidectomy) predominantly increased the ATP, ADP, and AMP hydrolysis in rat blood serum. These results suggest that both excess and deficiency of thyroid hormones can modulate the ATP diphosphohydrolase and 5`-nucleotidase activities in rat blood serum and consequently modulate the effects mediated by these enzymes and their products in vascular system. (C) 2010 International Union of Biochemistry and Molecular Biology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To investigate the effect of N omega-Nitro-L-arginine methyl ester CL-NAME) treatment, known to induce a sustained elevation of blood pressure, on ectonucleotidase activities in kidney membranes of rats. Main methods: L-NAME (30 mg/kg/day) was administered to Wistar rats for 14 days in the drinking water. Enzyme activities were determined colorimetrically and their gene expression patterns were analyzed by semi-quantitative RT-PCR. The metabolism of ATP and the accumulation of adenosine were evaluated by HPLC in kidney membranes from control and hypertensive rats. PKC phosphorylation state was investigated by Western blot. Key findings: We observed an increase in systolic blood pressure from 115 +/- 12 mmHg (control group) to 152 18 mmHg (L-NAME-treated group). Furthermore, the hydrolysis of ATP, ADP, AMP, and p-Nph-5`TMP was also increased (17%, 35%, 27%, 20%, respectively) as was the gene expression of NTPDase2, NTPDase3 and NPP3 in kidneys of hypertensive animals. Phospho-PKC was increased in hypertensive rats. Significance: The general increase in ATP hydrolysis and in ecto-5`-nucleotidase activity suggests a rise in renal adenosine levels and in renal autoregulatory responses in order to protect the kidney against the threat presented by hypertension. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes the enzymatic properties and molecular identification of 5`-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K-m (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7 +/- 10.4 mu M and 134.8 +/- 32.1 mu M, with V-max values of 6.7 +/- 0.4 and 143.8 +/- 23.8 nmol P-i/min/mg of protein (means +/- S.D., n = 4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5`-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5`-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca2+ influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that hypertension is closely associated to the development of vascular diseases and that the inhibition of nitric oxide biosynthesis by administration of N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) leads to arterial hypertension. In the vascular system, extracellular purines mediate several effects: thus, ADP is the most important platelet agonist and recruiting agent, while adenosine, all end product Of nucleotide metabolism, is a vasodilator and inhibitor of platelet activation and recruitment. Members of several families of enzymes, known as ectonucleotidases, including E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolase), E-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase) and 5`-nucleotidase are able to hydrolyze extracellular nucleotides until their respective nucleosides. We investigated the ectonuclectidase activities of serum and platelets from rats made hypertensive by oral administration of L-NAME (30 mg/kg/day for 14 days or 30 mg/kg/day for 14 days Plus 7 days of L-NAME washout, in the drinking water) in comparison to normotensive control rats. L-NAME promoted a significant rise in systolic blood pressure from 112 +/- 9.8 to 158 +/- 23 mmHg. The left ventricle weight index (LVWI) was increased in rats treated with L-NAME for 14 days when compared to control animals. In Serum samples, ATP, ADP and AMP hydrolysis were reduced by about 27%, 36% and 27%, respectively. In platelets, the decrease in ATP, ADP and AMP hydrolysis Was approximately 27%, 24% and 32%, respectively. All parameters recovered after 7 days of L-NAME washout. HPLC demonstrated a reduction in ADP, AMP and hypoxanthine levels by about 64%, 69% and 87%, respectively. In this study, we showed that ectonucleotidase activities are decreased in serum and platelets from L-NAME-treated rats, which should represent an additional risk for the development of hypertension. The modulation of ectonucleotidase activities may represent an approach to antihypertensive therapy via inhibition of spontaneous platelet activation and recruitment, as well as thrombus formation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat-labile toxins (LT) encompass at least 16 natural polymorphic toxin variants expressed by wild-type enterotoxigenic Escherichia coli (ETEC) strains isolated from human beings, but only one specific form, produced by the reference ETEC H10407 strain (LT1), has been intensively studied either as a virulence-associated factor or as a mucosal/transcutaneous adjuvant. In the present study, we carried out a biological/immunological characterization of a natural LT variant (LT2) with four polymorphic sites at the A subunit (S190L, G196D, K213E, and S224T) and one at the B subunit (T75A). The results indicated that purified LT2, in comparison with LT1, displayed similar in vitro toxic activities (adenosine 3`,5`-cyclic monophosphate accumulation) on mammalian cells and in vivo immunogenicity following delivery via the oral route. Nonetheless, the LT2 variant showed increased adjuvant action to ovalbumin when delivered to mice via the transcutaneous route while antibodies raised in mice immunized with LT2 displayed enhanced affinity and neutralization activity to LT1 and LT2. Taken together, the results indicate that the two most frequent LT polymorphic forms expressed by wild ETEC strains share similar biological features, but differ with regard to their immunological properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objective: Although certain serotypes of Aggregatibacter actinomycetemcomitans are associated more with aggressive periodontitis than are other serotypes, the correlation between distinct lineages and virulence traits in this species is poorly understood. This study aimed to evaluate the polymorphism of genes encoding putative virulence factors of clinical isolates, and to correlate these findings with A. actinomycetemcomitans serotypes, genotypes and periodontal status of the hosts. Material and Methods: Twenty-six clinical isolates from diverse geographic populations with different periodontal conditions were evaluated. Genotyping was performed using pulse-field gel electrophoresis. Polymorphisms in the genes encoding leukotoxin, Aae, ApaH and determinants for serotype-specific O polysaccharide were investigated. Results: The isolates were classified into serotypes a-f, and exhibited three apaH genotypes, five aae alleles and 25 macrorestriction profiles. Two serotype b isolates (7.7%), obtained from Brazilian patients with aggressive periodontitis, were associated with the highly leukotoxic genotype; these isolates showed identical fingerprint patterns and aae and apaH genotypes. Serotype c, obtained from various periodontal conditions, was the most prevalent among Brazilian isolates, and isolates were distributed in two aae alleles, but formed a genetically distinct group based on apaH analysis. Cluster analysis showed a close relationship between fingerprinting genotypes and serotypes/apaH genotypes, but not with aae genotypes. Conclusion: Apart from the deletion in the ltx promoter region, no disease-associated markers were identified. Non-JP2-like strains recovered from individuals with periodontal disease exhibited considerable genetic variation regarding aae/apaH genotypes, serotypes and XhoI DNA fingerprints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activity of the Na(+)/H(+) exchanger NHE3 is regulated by a number of factors including parathyroid hormone (PTH). In the current study, we used a renal epithelial cell line, the opossum kidney (OKP) cell, to elucidate the mechanisms underlying the long-term effects of PTH on NHE3 transport activity and expression. We observed that NHE3 activity was reduced 6 h after addition of PTH, and this reduction persisted almost unaltered after 24 h. The decrease in activity was associated with diminished NHE3 cell surface expression at 6, 16, and 24 h after PTH addition, total cellular NHE3 protein at 16 and 24 h, and NHE3 mRNA abundance at 24 h. The lower levels of NHE3 mRNA were associated to a small, but significant, decrease in mRNA stability. Additionally, by analyzing the rat NHE3 gene promoter activity in OKP cells, we verified that the regulatory region spanning the segment -152 to +55 was mildly reduced under the influence of PTH. This effect was completely abolished by the presence of the PKA inhibitor KT 5720. In conclusion, long-term exposure to PTH results in reduction of NHE3 mRNA levels due to a PKA-dependent inhibitory effect on the NHE3 promoter and a small reduction of mRNA half-life, and decrease in the total amount of protein which is preceded by endocytosis of the apical surface NHE3. The decreased NHE3 expression is likely to be responsible for the reduction of sodium, bicarbonate, and fluid reabsorption in the proximal tubule consistently perceived in experimental models of PTH disorders.