27 resultados para Volatile organic compounds

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 mu m carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 degrees C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, a three-dimensional Eulerian photochemical model was employed to estimate the impact that organic compounds have on tropospheric ozone formation in the Metropolitan Area of Sao Paulo (MASP). In the year 2000, base case simulations were conducted in two periods: August 22-24 and March 13-15. Based on the pollutant concentrations calculated by the model, the correlation coefficient relative to observations for ozone ranged from 0.91 to 0.93 in both periods. In the simulations employed to evaluate the ozone potential of individual VOCs, as well as the sensitivity of ozone to the VOC/NO(x) emission ratio, the variation in anthropogenic emissions was estimated at 15% (according to tests performed previously variations of 15% were stable). Although there were significant differences between the two periods, ozone concentrations were found to be much more sensitive to VOCs than to NO(x) in both periods and throughout the study domain. In addition, considering their individual rates of emission from vehicles, the species/classes that were most important for ozone formation were as follows: aromatics with a kOH>2x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); ethene; and formaldehyde, which are the principal species related to the production, transport, storage and combustion of fossil fuels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asymmetric emission profiles of the stereoisomers of plant-derived volatile organic compounds vary with season, geography, plant type, and stress factors. After oxidation of these compounds in the atmosphere, the low-vapor pressure products ultimately contribute strongly to the particle-phase material of the atmosphere. In order to explore the possibility of stereochemical transfer to atmospheric aerosol particles during the oxidation of biogenic volatile organic compounds, second-order coherent vibrational spectra were recorded of the particle-phase organic material produced by the oxidation of different stereoisomeric mixes of alpha-pinene. The spectra show that the stereochemical configurations are not scrambled but instead are transferred from the gas-phase molecular precursors to the particle-phase molecules. The spectra also show that oligomers formed in the particle phase have a handed superstructure that depends strongly and nonlinearly on the initial stereochemical composition of the precursors. Because the stereochemical mix of the precursors for a material can influence the physical and chemical properties of that material, our findings suggest that chirality is also important for such properties of plant-derived aerosol particles. Citation: Ebben, C. J., S. R. Zorn, S.-B. Lee, P. Artaxo, S. T. Martin, and F. M. Geiger (2011), Stereochemical transfer to atmospheric aerosol particles accompanying the oxidation of biogenic volatile organic compounds, Geophys. Res. Lett., 38, L16807, doi: 10.1029/2011GL048599.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel poly(p-xylylene), PPX, derivative bearing alkoxyphenyl side groups was electrochemically synthesized in 87% yield. The polymer, poly(4`-hexyloxy-2,5-biphenyleneethylene) (PHBPE), presented a fraction (92%) soluble in common organic solvents. It showed to be thermally resistant up to 185 degrees C. UV-vis analysis revealed an E-gap of 3.5 eV Gas sensors made from thin films of 10-camphorsulfonic acid-doped PHBPE deposited on interdigitated electrodes exhibited significant changes in electrical conductance upon exposure to five VHOCs: 1,2-dichloroethane, bromochloromethane, trichloromethane, dichloromethane and tetrachloromethane. The conductance decreased after exposure to tetrachloromethane and increased after exposure to all the other VHOCs. Three-dimensional plots of relative response versus time of half response versus time of half recovery showed good discrimination between the five VHOCs tested. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigate the control of the two-photon absorption process of a series of organic compounds via spectral phase modulation of the excitation pulse. We analyzed the effect of the pulse central wavelength on the control of the two-photon absorption process for each compound. Depending on the molecules` two-photon absorption position relative to the excitation pulse wavelength, different levels of coherent control were observed. By simulating the two-photon transition probability in molecular systems, taking into account the band structure and its positions, we could explain the experimental results trends. We observed that the intrapulse coherent interference plays an important role in the nonlinear process control besides just the pulse intensity modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of volatile organic compounds (VOC) by plants is well known. However, few scientific groups have studied VOC produced by green, brown and red algae. Headspace collection of volatiles and solid phase microextraction, as well as the traditional extraction by hydrodistillation combined with analytical chromatographic techniques (i.e., GC-MS), have significantly improved the investigation of VOC from plants and algae. The major volatile compounds found in seaweeds are hydrocarbons, terpenes, phenols, alcohols, aldehydes, ketones, esters, fatty acids and halogen or sulfur-containing compounds. This article presents an overview of VOC isolated from and identified in marine macro-algae. Focus is given to non-halogenated and non-sulfur volatile compounds, as well as strategies to analyze and identify algal VOC by GC-MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel poly(p-xylylene), PPX, derivative bearing phenyl side groups was electrochemically synthesized in 85% yield. The polymer, poly(2-phenyl-p-xylylene) (PPPX), presented a major fraction (88%) soluble in common organic solvents. It showed to be thermally resistant up to 140 degrees C. UV-VIS analysis revealed an Egap of similar to 3.0 eV. Gas sensors made from thin films of CSA doped PPPX deposited on interdigitated electrodes exhibited significant changes in electrical conductance upon exposure to five carbonyl compounds: acetaldehyde, propionaldehyde. benzaldehyde, acetone and butanone. Three-dimensional plots of relative response vs. time of half-response vs. time of half-recovery showed good discrimination between the five carbonyl Compounds tested. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flash points (T(FP)) of organic compounds are calculated from their flash point numbers, N(FP), with the relationship T(FP) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901. In turn, the N(FP) values can be predicted from boiling point numbers (Y(BP)) and functional group counts with the equation N(FP) = 0.974Y(BP) + Sigma(i)n(i)G(i) + 0.095 where G(i) is a functional group-specific contribution to the value of N(FP) and n(i) is the number of such functional groups in the structure. For a data set consisting of 1000 diverse organic compounds, the average absolute deviation between reported and predicted flash points was less than 2.5 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the metropolitan area of Sao Paulo, Brazil, ozone and particulate matter ( PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors ( nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Janio Quadros and Maria Maluf road tunnels, both located in Sao Paulo. The Janio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Janio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 mu g km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in Sao Paulo tunnels are higher than those found in other cities of the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through rapid reactions with ozone, which can initiate the formation of secondary organic aerosols, the emission of sesquiterpenes from vegetation in Amazonia may have significant impacts on tropospheric chemistry and climate. Little is known, however, about sesquiterpene emissions, transport, and chemistry within plant canopies owing to analytical difficulties stemming from very low ambient concentrations, high reactivities, and sampling losses. Here, we present ambient sesquiterpene concentration measurements obtained during the 2010 dry season within and above a primary tropical forest canopy in Amazonia. We show that by peaking at night instead of during the day, and near the ground instead of within the canopy, sesquiterpene concentrations followed a pattern different from that of monoterpenes, suggesting that unlike monoterpene emissions, which are mainly light dependent, sesquiterpene emissions are mainly temperature dependent. In addition, we observed that sesquiterpene concentrations were inversely related with ozone (with respect to time of day and vertical concentration), suggesting that ambient concentrations are highly sensitive to ozone. These conclusions are supported by experiments in a tropical rain forest mesocosm, where little atmospheric oxidation occurs and sesquiterpene and monoterpene concentrations followed similar diurnal patterns. We estimate that the daytime dry season ozone flux of -0.6 to -1.5 nmol m(-2) s(-1) due to in-canopy sesquiterpene reactivity could account for 7%-28% of the net ozone flux. Our study provides experimental evidence that a large fraction of total plant sesquiterpene emissions (46%-61% by mass) undergo within-canopy ozonolysis, which may benefit plants by reducing ozone uptake and its associated oxidative damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol physical and chemical properties were measured in a forest site in central Amazonia (Cuieiras reservation, 2.61S; 60.21W) during the dry season of 2004 (Aug-Oct). Aerosol light scattering and absorption, mass concentration, elemental composition and size distributions were measured at three tower levels (Ground: 2 m; Canopy: 28 m, and Top: 40 m). For the first time, simultaneous eddy covariance fluxes of fine mode particles and volatile organic compounds (VOC) were measured above the Amazonian forest canopy. Aerosol fluxes were measured by eddy covariance using a Condensation Particle Counter (CPC) and a sonic anemometer. VOC fluxes were measured by disjunct eddy covariance using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). At nighttime, a strong vertical gradient of phosphorus and potassium in the aerosol coarse mode was observed, with higher concentrations at Ground level. This suggests a source of primary biogenic particles below the canopy. Equivalent black carbon measurements indicate the presence of light-absorbing aerosols from biogenic origin. Aerosol number size distributions typically consisted of superimposed Aitken (76 nm) and accumulation modes (144 nm), without clear events of new particle formation. Isoprene and monoterpene fluxes reached respectively 7.4 and 0.82 mg m(-2) s(-1) around noon. An average fine particle flux of 0.05 +/- 0.10 10(6) m(-2) s(-1) was calculated, denoting an equilibrium between emission and deposition fluxes of fine mode particles at daytime. No significant correlations were found between VOC and fine mode aerosol concentrations or fluxes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic properties of copper thin films deposited in small channels and cavities were tested using Raman microscopy and mass spectroscopy (MS) techniques, mainly. The catalytic surface conditions were addressed visually and chemically by optical microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The experimental conditions of present work induced copper oxidation; eventually a number of carbon species and graphite remained on the catalytic surface. Quartz crystal microbalance and mass spectroscopy data support both adsorption and catalysis phenomena. MS showed CO2 formation during n-hexane heating process but not to 2-propanol, probably due to redox reactions. XPS of copper surface present in the cavity after catalysis tests detected Cu2O and a range of possible carbon species. The adsorption and catalytic performance of copper films deposited in cavities and microchannels were quite similar. A simple miniaturized device for microanalysis was proposed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of conjugated polymers in the gas and volatile organic compounds (VOCs) detections represents an advance in the development of the electronic noses. Polythiophenes show good thermal and environmental stability, are easily synthesized and they have been studied as gas and VOCs sensors using different principles or transduction techniques. Among these techniques, optical sensing has been attracted attention, mainly due to its versatility. However, conjugated polymer-based optical sensors are still less studied. This paper describes the use of two poly(3-alkylthiophenes) for VOCs optical detection. The sensing measurements were carried out using visible spectroscopy. Both polymers showed good sensitivity to the VOCs, showing fast and reversible responses with some hysteresis, and were unable to detect hydroxylated samples. Furthermore, it was demonstrated that the thickness of polymer films influences the intensity of the optical response. Although there is similarity in the superficial composition of the polymers films, demonstrated by their surface energies, they showed significant differences in their optical properties upon exposure to the VOCs. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Supercritical carbon dioxide (SC-CO(2)) extractions of Brazilian cherry (Eugenia uniflora L.) were carried out under varied conditions of pressure and temperature, according to a central composite 2(2) experimental design, in order to produce flavour-rich extracts. The composition of the extracts was evaluated by gas chromatography coupled with mass spectrometry (GC/MS). The abundance of the extracted compounds was then related to sensory analysis results, assisted by principal component and factorial discriminant analysis (PCA and FDA, respectively). The identified sesquiterpenes and ketones were found to strongly contribute to the characteristic flavour of the Brazilian cherry. The extracts also contained a variety of other volatile compounds, and part of the fruit wax contained long-chain hydrocarbons that according to multivariate analysis, contributed to the yield of the extracts, but not the flavour. Volatile phenolic compounds, to which antioxidant properties are attributed, were also present in the extracts in high proportion, regardless of the extraction conditions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inhibition of human cysteine cathepsins B, L, S and K was evaluated by a set of hypervalent tellurium compounds (telluranes) comprising both organic and inorganic derivatives. All telluranes studied showed a time-and concentration-dependent irreversible inhibition of the cathepsins, and their second-order inactivation rate constants were determined. The organic derivatives were potent inhibitors of the cathepsins and clear specificities were detected, which were parallel to their known substrate specificities. In all cases, the activity of the tellurane-inhibited cathepsins was recovered by treatment of the inactivated enzymes with reducing agents. The maximum stoichiometry of the reaction between cysteine residues and telluranes were also determined. The presented data indicate that it is possible to design organic compounds with a tellurium(IV) moiety as a novel warhead that covalently modifies the catalytic cysteine, and which also form strong interactions with subsites of cathepsins B, L, S and K, resulting in more specific inhibition.