19 resultados para Retinal pigment epithelium

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt is one of the main components of cast metal alloys broadly used in dentistry. It is the constituent of 45 to 70% of numerous prosthetic works. There are evidences that metal elements cause systemic and local toxicity. The purpose of the present study was to evaluate the effects of cobalt on the junctional epithelium and reduced enamel epithelium of the first superior molar in rats, during lactation. To do this, 1-day old rats were used, whose mothers received 300mg of cobalt chloride per liter of distilled water in the drinker, during lactation. After 21 days, the rat pups were killed with an anesthetic overdose. The heads were separated, fixed in ""alfac"", decalcified and embedded in paraffin. Frontal sections stained with hematoxylin and eosin were employed. Karyometric methods allowed to estimate the following parameters: biggest, smallest and mean diameters, D/d ratio, perimeter, area, volume, volume/area ratio, eccentricity, form coefficient and contour index. Stereologic methods allow to evaluate: cytoplasm/nucleus ratio, cell and cytoplasm volume, cell number density, external surface/basal membrane ratio, thickness of the epithelial layers and surface density. All the collected data were subjected to statistic analysis by the non-parametric Wilcoxon-Mann-Whitney test. The nuclei of the studied tissues showed smaller values after karyometry for: diameters; perimeter, area, volume and volume/area ratio. Stereologically, it was observed, in the junctional epithelium and in the reduced enamel epithelium, smaller cells with scarce cytoplasm, reflected in the greater number of cells per mm3 of tissue. In this study, cobalt caused epithelial atrophy, indicating a direct action on the junctional and enamel epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated the effects of Tris (hydroxymethyl)-aminomethane (TRIS) buffer and its interaction with nutrient concentration on the development of Gracilaria birdie, a common species on the Brazilian coast that has been exploited for agar production. Responses to different conditions were assessed through growth rates and pigment content (chlorophyll a, phycoerythrin, phycocyanin and allophycocyanin). Provasoli`s nutrient solution with and without TRIS addition was tested at concentrations of 12.5, 25 and 50%. The pH was also monitored. G. birdiae grew better in the absence of TRIS and at low nutrient concentrations, 12.5 and 25% (growth rates of 10.8-11.3%.day(-1)). Higher contents of phycoerythrin and chlorophyll a were observed without TRIS at 12.5 and 25% (Phycoerythrin, 649.6-698.0 mu g g(-1) fresh biomass; Chlorophyll a, 156.0-168.6 mu g g(-1) fresh biomass). These findings highlight the deleterious effect of TRIS on growth and phycoerythrin and chlorophyll a content. They also demonstrate the importance of appropriate nutrient concentration for laboratory cultures, depending on the intrinsic characteristics of each species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species of Gracilaria are some of the most useful algae in the world for the production of agar. As a consequence of its economic importance, the genus has been the subject of many studies worldwide. Color variants of Gracilaria birdiae have been found in the natural population on the Brazilian coast, and they have also been isolated from plants cultivated in laboratory. These findings raised new questions regarding intraspecific variation and the prospects of cultivating such variants for their agar production. Therefore, this work aimed to determine the mode of color inheritance for two G. birdiae strains: a greenish-brown strain (gb) found in a natural population and a green strain (gr) which had arisen as a spontaneous mutation in a red plant cultured in the laboratory. The pigment contents of these strains, as well as the red wildtype (rd), were also characterized. Crosses between female and male plants of the same color (rd, gr, or gb) and between different colors were performed. Crosses between plants of the same color showed tetrasporophytic and gametophytic descendents of the parental color. Recessive nuclear inheritance was found in the greenish-brown strain, and cytoplasmic maternal inheritance was found in the green strain; both had lower phycoerythrin and higher concentrations of allophycocyanin and phycocyanin than the wild-type. Chlorophyll a contents were similar among all strains. Taken together, our results contribute to knowledge about the variability of this important red algae. In addition, since greenish-brown and green strains showed stability of color, both could be selected and tested in experimental sea cultivation to evaluate if mutants have advantageous performance when compared with red strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypnea musciformis (Wulfen in Jacqu.) J.V. Lamour. is the main source for carrageenan production in Brazil and strains with selected characteristics could improve the production of raw material. The effects of kinetin on growth rates, morphology, protein content, and concentrations of pigments (chlorophyll a, phycoerythrin, phycocyanin, and allophycocyanin) were assessed in the wild strain (brown phenotype) and in the phycoerythrin-deficient strain (green phenotype) of H. musciformis. Concentrations of kinetin ranging from 0 to 50 mu M were tested in ASP 12-NTA synthetic medium with 10 mu M nitrate (N-limited) and 100 mu M nitrate (N-saturated). In N-limited condition, kinetin stimulated growth rates of the phycoerythrin-deficient strain and formation of lateral branches in both colour strains. Kinetin stimulated protein biosynthesis in both strains. However, differences between both nitrogen conditions were significant only in the phycoerythrin-deficient strain. In the wild strain, effects of kinetin on concentrations of phycobiliproteins were not significant in both nitrogen conditions, except for chlorophyll content. However, the phycoerythrin-deficient strain showed an opposite response, and kinetin stimulated the phycobiliprotein biosynthesis, with the highest concentrations of phycoerythrin in N-saturated medium, while the highest concentrations of allophycocyanin and phycocyanin were observed in N-limited medium. These results indicate that the effects of kinetin on growth, morphology, protein and phycobiliprotein contents are influenced by nitrogen availability, and the main nitrogen storage pools in phycoerythrin-deficient strain of H. musciformis submitted to N-limited conditions were phycocyanin and allophycocianin, the biosynthesis of which was enhanced by kinetin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The avian circadian system is composed of the retina, the mammalian homolog region of the suprachiasmatic nucleus (SNC), and the pineal gland. The retina, itself, displays many rhythmic physiological events, such as movements of photoreceptor cells, opsin expression, retinal reisomerization, and melatonin and dopamine production and secretion. Altogether, these rhythmic events are coordinated to predict environmental changes in light conditions during the day, optimizing retina function. The authors investigated the expression pattern of the melanopsin genes Opn4x and Opn4m, the clock genes Clock and Per2, and the genes for the key enzymes N-Acetyltransferase and Tyrosine Hidroxylase in chicken embryo dispersed retinal cells. Primary cultures of chicken retina from 8-day-old embryos were kept in constant dark (DD), in 12-h light/12-h dark (12L:12D), in 12L:12D followed by DD, or in DD in the absence or presence of 100 mu M glutamate for 12 h. Total RNA was extracted throughout a 24-h span, every 3 h starting at zeitgeber time 0 (ZT0) of the 6th day, and submitted to reverse transcriptase-polymerase chain reaction (RT-PCR) followed by quantitative PCR (qPCR) for mRNA quantification. The data showed no rhythmic pattern of transcription for any gene in cells kept in DD. However under a light-dark cycle, Clock, Per2, Opn4m, N-Acetyltransferase, and Tyrosine Hydroxylase exhibited rhythmic patterns of transcription. In DD, 100 mu M glutamate was able to induce rhythmic expression of Clock, strongly inhibited the expression of Tyrosine Hydroxylase, and, only at some ZTs, of Opn4x and Opn4m. The neurotransmitter had no effect on Per2 and N-Acetyltransferase transcription. The authors confirmed the expression of the protein OPN4x by immunocytochemistry. These results suggest that chicken embryonic retinal cells contain a functional circadian clock, whose synchronization requires light-dark cycle or glutamate stimuli. (Author correspondence: amdlcast@ib.usp.br).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that melatonin influences the development of alpha 8 nicotinic acetylcholine receptor (nAChR) by measurement of the acetylcholine-induced increase in the extracellular acidification rate (ECAR) in chick retinal cell cultures. Cellular differentiation that takes place between DIV (days in vitro) 4 and DIV 5 yields cells expressing alpha 8 nAChR and results in a significant increase in the ECAR acetylcholine-induced. Blocking melatonin receptors with luzindole for 48 h suppresses the development of functional alpha 8 nAChR. Here we investigated the time window for the effect of melatonin on retinal cell development in culture, and whether this effect was dependent on an increase in the expression of alpha 8 nAChR. First, we confirmed that luzindole was inhibiting the effects of endogenous melatonin, since it increases 2-[(125)I] iodomelatonin (23 pM) binding sites density in a time-dependent manner. Then we observed that acute (15, 60 min, or 12 h) luzindole treatment did not impair acetylcholine-induced increase in the ECAR mediated by activation of alpha 8 nAChR at DIV 5, while chronic treatment (from DIV 3 or DIV 4 till DIV 5, or DIV 3.5 till DIV 4.5) led to a time-dependent reduction of the increase in the acetylcholine-induced ECAR. The binding parameters for [(125)I]-alpha-bungarotoxin (10 nM) sites in membrane were unaffected by melatonin suppression that started at DIV 3. Thus, melatonin surges in the time window that occurs at the final stages of chick retinal cell differentiation in culture is essential for development of the cells expressing alpha 8 nAChR subtype in full functional form. (C) 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acute enteritis is commonly followed by intestinal neuromuscular dysfunction, including prolonged hyperexcitability of enteric neurons. Such motility disorders are associated with maintained increases in immune cells adjacent to enteric ganglia and in the mucosa. However, whether the commonly used animal model, trinitrobenzene sulphonate (TNBS)-induced enteritis, causes histological and immune cell changes similar to human enteric neuropathies is not clear. We have made a detailed study of the mucosal damage and repair and immune cell invasion following intralumenal administration of TNBS. Intestines from untreated, sham-operated and TNBS-treated animals were examined at 3 h to 56 days. At 3 h, the mucosal surface was completely ablated, by 6 h an epithelial covering was substantially restored and by 1 day there was full re-epithelialisation. The lumenal epithelium developed from a squamous cell covering to a fully differentiated columnar epithelium with mature villi at about 7 days. Prominent phagocytic activity of enterocytes occurred at 1-7 days. A surge of eosinophils and T lymphocytes associated with the enteric nerve ganglia occurred at 3 h to 3 days. However, elevated immune cell numbers occurred in the lamina propria of the mucosa until 56 days, when eosinophils were still three times normal. We conclude that the disruption of the mucosal surface that causes TNBS-induced ileitis is brief, a little more than 6 h, and causes a transient immune cell surge adjacent to enteric ganglia. This is much briefer than the enteric neuropathy that ensues. Ongoing mucosal inflammatory reaction may contribute to the persistence of enteric neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are modulated by photic and non-photic stimuli. In rodents, direct photic stimuli reach the SCN mainly through the retinohypothalamic tract (RHT), whereas indirect photic stimuli are mainly conveyed by the geniculohypothalamic tract (GHT). In rodents, retinal cells form a pathway that reaches the intergeniculate leaflet (IGL) where they establish synapses with neurons that express neuropeptide Y (NPY), hence forming the GHT projecting to the SCN. In contrast to the RHT, which has been well described in primates, data regarding the presence or absence of the IGL and GHT in primates are contradictory. Some studies have suggested that an area of the pregeniculate nucleus (PGN) of primates might be homologous to the IGL of rodents, but additional anatomical and functional studies on primate species are necessary to confirm this hypothesis. Therefore, this study investigated the main histochemical characteristics of the PGN and the possible existence of the GHT in the SCN of the primate Cebus, comparing the distribution of NPY immunoreactivity, serotonin (5-HT) immunoreactivity and retinal terminal fibers in these two structures. The results show that a collection of cell bodies containing NPY and serotonergic immunoreactivity and retinal innervations are present within a zone that might be homologous to the IGL of rodents. The SCN also receives dense retinal innervations and we observed an atypical distribution of NPY- and 5-HT-immunoreactive fibers without regionalization in the ventral part of the nucleus as described for other species. These data may reflect morphological differences in the structures involved in the regulation of circadian rhythms among species and support the hypothesis that the GHT is present in some higher primates (diurnal animals). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the possible participation of TRPV1 channels in retinal apoptosis and overall development. Retinas from newborn, male albino rats were treated in vitro with capsazepine, a TRPV1 antagonist. The expression of cell cycle markers was not changed after TRPV1 blockade, whereas capsazepine reduced the number of apoptotic cells throughout the retina,increased ERK1/2 and p38 phosphorylation and slightly reduced JNK phosphorylation. The expression of BAD, Bcl-2, as well as integral and cleaved capsase-3 were similar in all experimental conditions. Newborn rats were kept for 2 months after receiving high doses of capsazepine. In their retinas, calbindin and parvalbumin protein levels were upregulated, but only the number of amacrine-like, parvalbumin-positive cells was increased. The numbers of calretinin, calbindin, ChAT, vimentin, PKC-alpha and GABA-positive cells were similar in both conditions. Protein expression of synapsin Ib was also increased in the retinas of capsazepine-treated rats. Calretinin, vimentin, GFAP, synapsin Ia, synaptophysin and light neurofilament protein levels were not changed when compared to control values. Our results indicate that TRPV1 channels play a role in the control of the early apoptosis that occur during retinal development, which might be dependent on MAPK signaling. Moreover, it seems that TRPV1 function might be important for neuronal and synaptic maturation in the retina. (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional retinal projections target three functionally complementary systems it) the brain of mammals: the primary visual system, the visuomotor integration systems and the circadian timing system. In recent years, studies in several animals have been conducted to investigate the retinal projections to these three systems, despite some evidence of additional targets. The aim of this study was to disclose a previously unknown connection between the retina and the parabrachial complex of the common marmoset, by means of the intraocular injection of cholera toxin Subunit b. A few labeled retinal fibers/terminals that are detected in the medial parabrachial portion of the marmoset brain show clear varicosities, Suggesting terminal fields. Although the possible role of these projections remains unknown, they may provide a modulation of the cholinergic parabrachial neurons which project to the thalamic dorsal lateral geniculate nucleus. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junction (GJ) channels couple adjacent cells, allowing transfer of second messengers, ions, and molecules up to 1 kDa. These channels are composed by a multigene family of integral membrane proteins called connexins (Cx). In the retina, besides being essential circuit element in the visual processing, GJ channels also play important roles during its development. Herein, we analyzed Cx43, Cx45, Cx50, and Cx56 expression during chick retinal histogenesis. Cx exhibited distinct expression profiles during retinal development, except for Cx56, whose expression was not detected. Cx43 immunolabeling was observed at early development, in the transition of ventricular zone and pigmented epithelium. Later, Cx43 was seen in the outer plexiform and ganglion cell layers, and afterwards also in the inner plexiform layer. We observed remarkable changes in the phosphorylation status of this protein, which indicated modifications in functional properties of this Cx during retinal histogenesis. By contrast, Cx45 showed stable gene expression levels throughout development and ubiquitous immunoreactivity in progenitor cells. From later embryonic development, Cx45 was mainly observed in the inner retina, and it was expressed by glial cells and neurons. In turn, Cx50 was virtually absent in the chick retina at initial embryonic phases. Combination of PCR, immunohistochemistry and Western blot indicated that this Cx was present in differentiated cells, arising in parallel with the formation of the visual circuitry. Characterization of Cx expression in the developing chick retina indicated particular roles for these proteins and revealed similarities and differences when compared to other species. (C) 2008 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration and neuro protection. The aim of this study was to evaluate the effects of unilateral retinal ablation on the expression of the cannabinoid receptor subtype 1 (CB1) at both protein and mRNA levels in the optic tectum of the adult chick brain. After different survival times postlesion (2-30 days), the chick brains were subjected to immunohistochemical, immunoblotting, and real-time PCR procedures to evaluate CB1 expression. TUNEL and Fluoro-Jade B were used to verify the possible occurrence of cell death, and immunostaining for the microtubule-associated protein MAP-2 was performed to verify possible dendritic remodeling after lesions. No cell death could be observed in the deafferented tectum, at least up to 30 days postlesion, although Fluoro-Jade B could reveal degenerating axons and terminals. Retinal ablation seems to generate an increase of CB1 protein in the optic tectum and other retinorecipient visual areas, which paralleled an increase in MAP-2 staining. On the other hand, CB, mRNA levels were not changed after retinal ablation. Our results reveal that CB, expression in visual structures of the adult chick brain may be negatively regulated by the retinal innervation. The increase of CB1 receptor expression observed after retinal removal indicates that these receptors are not presynaptic in retinal axons projecting to the tectum and suggests a role of the cannabinoid system in plasticity processes ensuing after lesions. (c) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connexin (Cx) channels and hemichannels are involved in essential processes during nervous system development such as apoptosis, propagation of spontaneous activity and interkinetic nuclear movement. In the first part of this study, we extensively characterized Cx gene and protein expression during retinal histogenesis. We observed distinct spatio-temporal patterns among Studied Cx and an overriding, ubiquitous presence of Cx45 in progenitor cells. The role of Cx-mediated communication was assessed by using broad-spectrum (carbenoxotone, CBX) and Cx36/Cx50 channel-specific (quinine) blockers. In vivo application of CBX, but not quinine, caused remarkable reduction in retinal thickness, suggesting changes in cell proliferation/apoptosis ratio. Indeed, we observed a decreased number of mitotic cells in CBX-injected retinas, with no significant changes in the expression of PCNA, a marker for cells in proliferative state. Taken together, Our results pointed a pivotal role of Cx45 in the developing retina. Moreover, this study revealed that Cx-mediated Communication is essential in retinal histogenesis, particularly in the control of cell proliferation. (C) 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to analyze the gene and protein expression and the pattern of distribution of the vanilloid receptors TRPV1 and TRPV2 in the developing rat retina. During the early phases of development, TRPV1 was found mainly in the neuroblastic layer of the retina and in the pigmented epithelium. In the adult, TRPV1 was found in microglial cells, blood vessels, astrocytes and in neuronal structures, namely synaptic boutons of both retina] plexiform layers, as well as in cell bodies of the inner nuclear layer and the ganglion cell layer. The pattern of distribution of TRPV1 was mainly punctate, and there was higher TRPV1 labeling in the peripheral retina than in central regions. TRPV2 expression was quite distinct. its expression was virtually undetectable by immunoblotting before P1, and that receptor was found by immunohistochemistry only by postnatal day 15 (PI 5). RNA and protein analysis showed that the adult levels are only reached by P60, which includes small processes in the retinal plexiform layers, and labeled cellular bodies in the inner nuclear layer and the ganglion cell layer. There was no overlapping between the signal observed for both receptors. in conclusion, our results showed that the patterns of distribution of TRPV1 and TRPV2 are different during the development of the rat retina, suggesting that they have specific roles in both visual processing and in providing specific cues to neural development. (C) 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the content of Transforming Growth Factor-beta (TGF beta) wanes in the milk of lactating rat, an increase in TGF beta is observed in the gastric epithelia concomitant with differentiation of the glands upon weaning. Whereas TGF beta has been shown to inhibit the proliferation of gastrointestinal cells in vitro, its functional significance and mechanisms of action have not been studied in vivo. Therefore, we administered TGF beta 1 (1 ng/g body wt.) to 14-day-old rats in which the gastric epithelium was induced to proliferate by fasting, and determined the involvement of signaling through Smads and the impact on epithelial cell proliferation and apoptosis. After the gavage, we observed the progressive increase of active TGF beta 1 while T beta RII-receptor remained constant in the gastric mucosa. By immunohistochemistry, we showed Smad2/3 increase at 60 min (p < 0.05) and Smad2 phosphorylation/activation and translocation to the nucleus most prominently between 0 and 30 min after treatment (p < 0.05). Importantly, TGF beta 1 inhibited cell proliferation (p < 0.05), which was estimated by BrDU pulse-labeling 12 h after gavage. Lower proliferation was reflected by increased p27(kip1) at 2 h (p < 0.05). Also, TGF beta 1 increased apoptosis as measured by M30 labeling at 60 and 180 min (p < 0.001), and by morphological features at 12 h (p < 0.05). In addition, we observed higher levels of activated caspase 3 (17 kDa) from 0 to 30 min. Altogether, these data indicate a direct effect of TGF beta 1 signaling through Smads on both inhibiting proliferation, through alteration of cycle proteins, and inducing apoptosis of gastric epithelial cells in vivo. Further, the studies suggest a potential role for both milk and tissue-expressed TG beta 1 in gastric growth during postnatal development, (C) 2007 Elsevier B.V. All rights reserved.