21 resultados para Regulatory T cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Paracoccidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-alpha), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia reperfusion injury (IRI) is a potential contributor for the development of chronic allograft nephropathy. T cells are important mediators of injury, even in the absence of alloantigens. We performed a depletion of TCD4(+)CTLA4(+)Foxp3(+) cells with anti-CD25(PC61), a treatment with anti-GITR (DTA-1) and rat-IgG, followed by 45 min of ischemia and 24/72 h of reperfusion, and then analyzed blood urea, kidney histopathology and gene expression in kidneys by QReal Time PCR. After 24 h of reperfusion, depletion of TCD4(+)CTLA4(+)Foxp3(+) cells reached 30.3%(spleen) and 67.8%(lymph nodes). 72 h after reperfusion depletion reached 43.1%(spleen) and 90.22%(lymph nodes) and depleted animals presented with significantly poorer renal function, while DTA-1 (anti-GITR)-treated ones showed a significant protection, all compared to serum urea from control group (IgG: 150.10 +/- 50.04; PC61: 187.23 +/- 31.38; DTA-1: 64.53 +/- 25.65, mg/dL, p<0.05). These data were corroborated by histopathology. We observed an increase of HO-1 expression in animals treated with DTA-1 at 72 h of reperfusion with significant differences. Thus, our results suggest that PC61 (anti-CD25) mAb treatment is deleterious, while DTA-1 (anti-GITR) mAb treatment presents a protective role in the renal IRI, indicating that some regulatory populations of T cells might have a role in IRI. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4(+) CD25(+) Foxp3(+) Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123(+)), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-alpha) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and longlasting protective immunity to malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Dendritic cells (DCs) play an important role in the clearance of apoptotic cells. The removal of apoptotic cells leads to peripheral tolerance, although their role is still not clear. We show that the uptake of apoptotic thymocytes by DCs converts these cells into tolerogenic DCs resistant to maturation by lipopolysaccharide, modulating the production of interleukin-12 and up-regulating the expression of transforming growth factor-beta(1) latency associated peptide. We also observed that DCs pulsed with apoptotic cells in the allogeneic context were more efficient in the expansion of regulatory T cells (Tregs), and that this expansion requires contact between DCs and the T cell. The Tregs sorted from in vitro culture suppressed the proliferation of splenocytes in vitro in a specific and non-specific manner. In the in vivo model, the transfer of CD4+ CD25- cells to Nude mice induced autoimmunity, with cell infiltrate found in the stomach, colon, liver and kidneys. The co-transfer of CD4+ CD25- and CD4+ CD25+ prevented the presence of cell infiltrates in several organs and increased the total cell count in lymph nodes. Our data indicate that apoptotic cells have an important role in peripheral tolerance via induction of tolerogenic DCs and CD4+ CD25+ Foxp3+ cells that present regulatory functions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To study the role of TLR2 in a experimental model of chronic pulmonary infection, TLR2-deficient and wild-type mice were intratracheally infected with Paracoccidioides brasiliensis, a primary fungal pathogen. Compared with control, TLR2(-/-) mice developed a less severe pulmonary infection and decreased NO synthesis. Equivalent results were detected with in vitro-infected macrophages. Unexpectedly, despite the differences in fungal loads both mouse strains showed equivalent survival times and severe pulmonary inflammatory reactions. Studies on lung-infiltrating leukocytes of TLR2(-/-) mice demonstrated an increased presence of polymorphonuclear neutrophils that control fungal loads but were associated with diminished numbers of activated CD4(+) and CD8(+) T lymphocytes. TLR2 deficiency leads to minor differences in the levels of pulmonary type 1 and type 2 cytokines, but results in increased production of KC, a CXC chemokine involved in neutrophils chemotaxis, as well as TGF-beta, IL-6, IL-23, and IL-17 skewing T cell immunity to a Th17 pattern. In addition, the preferential Th17 immunity of TLR2(-/-) mice was associated with impaired expansion of regulatory CD4(+)CD25(+)FoxP3(+) T cells. This is the first study to show that TLR2 activation controls innate and adaptive immunity to P. brasiliensis infection. TLR2 deficiency results in increased Th17 immunity associated with diminished expansion of regulatory T cells and increased lung pathology due to unrestrained inflammatory reactions. The Journal of Immunology, 2009, 183: 1279-1290.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Common Variable Immunodeficiency (CVID) is a primary immunodeficiency disease characterized by defective immunoglobulin production and often associated with autoimmunity. We used flow cytometry to analyze CD4(+)CD25(HIGH)FOXP3(+) T regulatory (Treg) cells and ask whether perturbations in their frequency in peripheral blood could underlie the high incidence of autoimmune disorders in CVID patients. In this study, we report for the first time that CVID patients with autoimmune disease have a significantly reduced frequency of CD4(+)CD25(HIGH)FOXP3(+) cells in their peripheral blood accompanied by a decreased intensity of FOXP3 expression. Notably, although CVID patients in whom autoimmunity was not diagnosed had a reduced frequency of CD4(+)CD25(HIGH)FOXP3(+) cells, FOXP3 expression levels did not differ from those in healthy controls. In conclusion, these data suggest compromised homeostasis of CD4(+)CD25(HIGH)FOXP3(+) cells in a subset of CVID patients with autoimmunity, and may implicate Treg cells in pathological mechanisms of CVID. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most important antigen-presenting cells of the immune system and have a crucial role in T-lymphocyte activation and adaptive immunity initiation. However, DCs have also been implicated in maintaining immunological tolerance. In this study, we evaluated changes in the CD4(+) CD25(+) Foxp3(+) T-cell population after co-culture of lymph node cells from BALB/c mice with syngeneic bone marrow-derived DCs. Our results showed an increase in CD4(+) CD25(+) Foxp3(+) T cells after co-culture which occurred regardless of the activation state of DCs and the presence of allogeneic apoptotic cells; however, it was greater when DCs were immature and were pulsed with the alloantigen. Interestingly, syngeneic apoptotic thymocytes were not as efficient as allogeneic apoptotic cells in expanding the CD4(+) CD25(+) Foxp3(+) T-cell population. In all experimental settings, DCs produced high amounts of transforming growth factor (TGF)-beta. The presence of allogeneic apoptotic cells induced interleukin (IL)-2 production in immature and mature DC cultures. This cytokine was also detected in the supernatants under all experimental conditions and enhanced when immature DCs were pulsed with the alloantigen. CD4(+) CD25(+) Foxp3(+) T-cell expansion during co-culture of lymph node cells with DCs strongly suggested that the presence of alloantigen enhanced the number of regulatory T cells (Tregs) in vitro. Our data also suggest a role for both TGF-beta and IL-2 in the augmentation of the CD4(+) CD25(+) Foxp3(+) population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

T-cell immunity has been claimed as the main immunoprotective mechanism against Paracoccidioides brasiliensis infection, the most important fungal infection in Latin America. As the initial events that control T-cell activation in paracoccidioidomycosis (PCM) are not well established, we decided to investigate the role of CD28, an important costimulatory molecule for the activation of effector and regulatory T cells, in the immunity against this pulmonary pathogen. Using CD28-deficient (CD28(-/-)) and normal wild-type (WT) C57BL/6 mice, we were able to demonstrate that CD28 costimulation determines in pulmonary paracoccidioidomycosis an early immunoprotection but a late deleterious effect associated with impaired immunity and uncontrolled fungal growth. Up to week 10 postinfection, CD28(-/-) mice presented increased pulmonary and hepatic fungal loads allied with diminished production of antibodies and pro-and anti-inflammatory cytokines besides impaired activation and migration of effector and regulatory T (Treg) cells to the lungs. Unexpectedly, CD28-sufficient mice progressively lost the control of fungal growth, resulting in an increased mortality associated with persistent presence of Treg cells, deactivation of inflammatory macrophages and T cells, prevalent presence of anti-inflammatory cytokines, elevated fungal burdens, and extensive hepatic lesions. As a whole, our findings suggest that CD28 is required for the early protective T-cell responses to P. brasiliensis infection, but it also induces the expansion of regulatory circuits that lately impair adaptive immunity, allowing uncontrolled fungal growth and overwhelming infection, which leads to precocious mortality of mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. FTY720 (fingolimod) is an immunomodulatory drug capable of preventing T-cell migration to inflammatory sites by binding to and subsequently downregulating the expression of sphingosine-1 phosphate receptor 1 (S1P(1)) leading in turn to T-cell retention in lymphoid organs. Additional effects of FTY720 by increasing functional activity of regulatory T cells have recently been demonstrated, raising the conversion of conventional T cells into regulatory T cells and affecting the sequestration of regulatory T cells in normal mice. In this study, the action of FTY720 in the ocular autoimmune model in mice was investigated. METHODS. Mice were immunized with 161-180 peptide and pertussis toxin and were treated with 1 mg/kg/d FTY720 by gavage (7-21 days postimmunization [dpi]) or left untreated. Spleen cells, harvested 21 dpi, were cultured and assayed for cytokine production. Draining lymph node, spleen, and eye cells 21 dpi were assayed for quantification of T-cell populations. Disease severity was evaluated by histologic examination of the enucleated eyes at 21 and 49 dpi. In addition, anti-IRBP antibodies were analyzed by ELISA. RESULTS. FTY720 was effective in suppressing the experimental autoimmune uveitis score. Although there was a reduction in the number of eye-infiltrating cells, FTY did not prevent Treg accumulation at this site. FTY720 leads to a significant increase of CD4(+)IFN-gamma(+) and CD4(+)Foxp3(+) cell percentages in lymph nodes, suggesting that this site could be the source of Treg cells found in the eye. CONCLUSIONS. The data showed that treatment in vivo with FTY720 was able to suppress EAU in mice. These results are indicative of the possible therapeutic use of FTY720 in ocular autoimmune processes. (Invest Ophthalmol Vis Sci. 2010;51:2568-2574) DOI:10.1167/iovs.09-4769

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) plays a role both in the induction of Treg and in the differentiation of the IL-17-secreting T cells (Th17) which drive inflammation in experimental autoimmune encephalomyelitis (EAE). We investigated the role that thrombospondin-1 (TSP-1) dependent activation of TGF-beta played in the generation of an encephalitic Th17 response in EAE. Upon immunization with myelin oligodendrocyte glycoprotein peptide (MOG(35-55)), TSP-1 deficient (TSP-1(null)) mice and MOG(35-55) TCR transgenic mice that lack of TSP-1 (2D2.TSP-1(null)) exhibited an attenuated form of EAE, and secreted lower levels of IL-17. Adoptive transfer of in vitro-activated 2D2.TSP-1(null) T cells induced a milder form of EAE, independent of TSP-1 expression in the recipient mice. Furthermore, in vitro studies demonstrated that anti-CD3/anti-CD28 pre-activated CD4+ T cells transiently upregulated latent TGF-beta in a TSP-1 dependent way, and such activation of latent TGF-beta was required for the differentiation of Th17 cells. These results demonstrate that TSP-1 participates in the differentiation of Th17 cells through its ability to activate latent TGF-beta, and enhances the inflammatory response in EAE. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms that govern the initial interaction between Paracoccidioides brasiliensis, a primary dimorphic fungal pathogen, and cells of the innate immunity need to be clarified. Our previous studies showed that Toll-like receptor 2 (TLR2) and TLR4 regulate the initial interaction of fungal cells with macrophages and the pattern of adaptive immunity that further develops. The aim of the present investigation was to assess the role of MyD88, an adaptor molecule used by TLRs to activate genes of the inflammatory response in pulmonary paracoccidioidomycosis. Studies were performed with normal and MyD88(-/-) C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells. MyD88(-/-) macrophages displayed impaired interaction with fungal yeast cells and produced low levels of IL-12, MCP-1, and nitric oxide, thus allowing increased fungal growth. Compared with wild-type (WT) mice, MyD88(-/-) mice developed a more severe infection of the lungs and had marked dissemination of fungal cells to the liver and spleen. MyD88(-/-) mice presented low levels of Th1, Th2, and Th17 cytokines, suppressed lymphoproliferation, and impaired influx of inflammatory cells to the lungs, and this group of cells comprised lower numbers of neutrophils, activated macrophages, and T cells. Nonorganized, coalescent granulomas, which contained high numbers of fungal cells, characterized the severe lesions of MyD88(-/-) mice; the lesions replaced extensive areas of several organs. Therefore, MyD88(-/-) mice were unable to control fungal growth and showed a significantly decreased survival time. In conclusion, our findings demonstrate that MyD88 signaling is important in the activation of fungicidal mechanisms and the induction of protective innate and adaptive immune responses against P. brasiliensis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

immunodeficiency (CVID), the most common symptomatic primary immunodeficiency in adulthood. Different authors report high prevalences of autoimmune diseases in CVID, and several mechanisms have been proposed to explain this apparent paradox. Genetic predisposition, under current surveillance, innate and adaptive immunity deficiencies leading to persistent/recurrent infections, variable degrees of immune dysregulation, and possible failure in central and peripheral mechanisms of tolerance induction or maintenance may all contribute to increased autoimmunity. Conclusions Data on the clinical/immunological profile of affected patients and treatment are available mostly concerning autoimmune cytopenias, the most common autoimmune diseases in CVID. Treatment is based on conventional alternatives, in association with short experience with new agents, including rituximab and infliximab. Benefits of early immunoglobulin substitutive treatment and hypothetical premature predictors of autoimmunity are discussed as potential improvements to CVID patients` follow-up.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: We investigated the influence of acute inflammation in skin isograft acceptance. Methods: Two mouse lines selected for maximal (AIR(MAX)) or minimal inflammatory response (AIR(MIN)) were transplanted with syngeneic skin. Cellular infiltrates and cytokine production were measured 1, 3, 7 or 14 days post-transplantation. The percentage of CD4(+) CD25(+) Foxp3(+) cells in the lymph nodes was also evaluated. Results: Grafts were totally accepted in 100% of AIR(MAX) and in 26% of AIR(MIN) mice. In the latter, partial acceptance was observed in 74% of the animals. Emigrated cells were basically PMN and were enhanced in AIR(MAX) transplants. IL-10 production by graft infiltrating cells showed no interline differences. IFN-gamma was increased in AIR(MIN) grafts at day 14 and lower percentages of CD4(+)CD25(+)Foxp3(+) cells in the lymph nodes were observed in these mice. Conclusions: Our data suggest that differences in graft acceptance might be due to a lack of appropriate regulation of the inflammatory response in AIR(MIN) mice compromising the self/non-self recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mycobacterium bovis Bacillus Calmette-Guerin (BCG) has been shown to down-regulate experimental allergic asthma, a finding that reinforced the hygiene hypothesis. We have previously found that recombinant BCG (rBCG) strain that express the genetically detoxified Si subunit of pertussis toxin (rBCG-S1PT) exerts an adjuvant effect that enhances Th1 responses against BCG proteins. Here we investigated the effect of this rBCG-S1PT on the classical ovalbumin-induced mouse model of allergic lung disease. We found that rBCG-S1PT was more effective than wild-type BCG in preventing Th2-mediated allergic immune responses. The inhibition of allergic lung disease was not associated with increased concentration of suppressive cytokines or with an increased number of pulmonary regulatory T cells but was positively correlated with the increase in IFN-gamma-producing T cells and T-bet expression in the lung. In addition, an IL-12-dependent mechanism appeared to be important to the inhibition of lung allergic disease. The inhibition of allergic inflammation was found to be restricted to the lung because when allergen challenge was given by the intraperitoneal route, rBCG-S1PT administration failed to inhibit peritoneal allergic inflammation and type 2 cytokine production. Our work offers a nonclassical interpretation for the hygiene hypothesis indicating that attenuation of lung allergy by rBCG could be due to the enhancement of local lung Th1 immunity induced by rBCG-S1PT. Moreover, it highlights the possible use of rBCG strains as multipurpose immunomodulators by inducing specific immunity against microbial products while protecting against allergic asthma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trypanosoma cruzi is a protozoan parasite that infects vertebrates, causing in humans a pathological condition known as Chagas` disease. The infection of host cells by T. cruzi involves a vast collection of molecules, including a family of 85 kDa GPI-anchored glycoproteins belonging to the gp85/trans-sialidase superfamily, which contains a conserved cell-binding sequence (VTVXNVFLYNR) known as FLY, for short. Herein, it is shown that BALB/c mice administered with a single dose (1 mu g/animal, intraperitoneally) of FLY-synthetic peptide are more susceptible to infection by T. cruzi, with increased systemic parasitaemia (2-fold) and mortality. Higher tissue parasitism was observed in bladder (7.6-fold), heart (3-fold) and small intestine (3.6-fold). Moreover, an intense inflammatory response and increment of CD4(+) T cells (1.7-fold) were detected in the heart of FLY-primed and infected animals, with a 5-fold relative increase of CD4(+)CD25(+)FoxP3(+) T (Treg) cells. Mice treated with anti-CD25 antibodies prior to infection, showed a decrease in parasitaemia in the FLY model employed. In conclusion, the results suggest that FLY facilitates in vivo infection by T. cruzi and concurs with other factors to improve parasite survival to such an extent that might influence the progression of pathology in Chagas` disease.