38 resultados para NADPH desidrogenase

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the effect of a high-fat diet (HFD) on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in rat pancreatic islets. We investigated if changes in NADPH oxidase are connected to beta cell dysfunction reported in obese animals. Methods: Male Wistar rats were fed a HFD or control diet for 3 months. DNA fragmentation, insulin secretion, and [U-(14)C] glucose oxidation were examined in isolated pancreatic islets. The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were assessed by immunohistochemistry. The protein content of gp91(phox) and p47(phox) was evaluated by Western blotting. Production of reactive oxygen species (ROS) was determined by a fluorescence assay using hydroethidine. Results: Occurrence of DNA fragmentation was reduced in pancreatic islets from HFD rats. There were no differences in oxidative stress markers between the groups. Glucose oxidation and insulin secretion were elevated due to high glucose in pancreatic islets from HFD rats. Protein concentrations of p47(phox) and gp91(phox) subunits were reduced and ROS production was diminished in pancreatic islets from HFD rats. Conclusions: The diminished content of NADPH oxidase subunits and ROS concentrations may be associated with increased glucose oxidation and insulin secretion in an attempt to compensate for the peripheral insulin resistance elicited by the HFD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) appear to be involved in several neurodegenerative disorders. We tested the hypothesis that oxidative stress could have a role in the hippocampal neurodegeneration observed in temporal lobe epilepsy induced by pilocarpine. We first determined the spatio-temporal pattern of ROS generation, by means of detection with dihydroethidium oxidation, in the CA1 and CA3 areas and the dentate gyrus of the dorsal hippocampus during status epilepticus induced by pilocarpine. Fluoro-Jade B assays were also performed to detect degenerating neurons. ROS generation was increased in CA1, CA3 and the dentate gyrus after pilocarpine-induced seizures, which was accompanied by marked cell death. Treatment of rats with a NADPH oxidase inhibitor (apocynin) for 7 days prior to induction of status epilepticus was effective in decreasing both ROS production (by an average of 20%) and neurodegeneration (by an average of 61%). These results suggest an involvement of ROS generated by NADPH oxidase in neuronal death in the pilocarpine model of epilepsy. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, reactive oxygen species (ROS) derived from the vascular isoforms of NADPH oxidase, Nox1, Nox2, and Nox4, have been implicated in many cardiovascular pathologies. As a result, the selective inhibition of these isoforms is an area of intense current investigation. In this study, we postulated that Nox2ds, a peptidic inhibitor that mimics a sequence in the cytosolic B-loop of Nox2, would inhibit ROS production by the Nox2-. but not the Noxl- and Nox4-oxidase systems. To test our hypothesis, the inhibitory activity of Nox2ds was assessed in cell-free assays using reconstituted systems expressing the Nox2-, canonical or hybrid Nox1- or Nox4-oxidase. Our findings demonstrate that Nox2ds, but not its scrambled control, potently inhibited superoxide (O(2)(center dot-)) production in the Nox2 cell-free system, as assessed by the cytochrome c assay. Electron paramagnetic resonance confirmed that Nox2ds inhibits O(2)(center dot-) production by Nox2 oxidase. In contrast, Nox2ds did not inhibit ROS production by either Nox1- or Nox4-oxidase. These findings demonstrate that Nox2ds is a selective inhibitor of Nox2-oxidase and support its utility to elucidate the role of Nox2 in organ pathophysiology and its potential as a therapeutic agent. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that mononuclear leukocytes from patients with sickle cell disease (SCD) release higher amounts of superoxide compared with normal controls. The aim of this study was to further study the NADPH oxidase system in these patients by investigating gene expression of NADPH oxidase components, phosphorylation of p47(phox) component, and the release of cytokines related to NADPH oxidase activation in mononuclear leukocytes from patients with SCD. gp91(phox) gene expression was significantly higher in monocytes from SCD patients compared with normal controls (P = 0.036). Monocytes from SCD patients showed higher levels of p47 phox phosphorylation compared with normal controls. INF-gamma release by lymphocytes from SCD patients was significantly higher compared with normal controls, after 48 h culture with phytohemagglutinin (P = 0.02). The release of TNF-alpha by monocytes from SCD patients and normal controls was similar after 24 and 48 h culture with lipopolysaccharide (P > 0.05). We conclude that monocytes from SCD patients show higher levels of gp91(phox) gene expression and p47(phox) phosphorylation, along with increased IFN-gamma release by SCD lymphocytes. These findings help to explain our previous observation showing the increased respiratory burst activity of mononuclear leukocytes from SCD patients and may contribute to inflammation and tissue damage in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apocynin has been extensively used as an inhibitor of NADPH oxidase (NOX) in many experimental models using phagocytic and non-phagocytic cells. Currently, there is some controversy about the efficacy of apocynin in non-phagocytic cells, but in phagocytes the reported results are consistent, which could be due to the presence of myeloperoxidase in these cells. This enzyme has been proposed as responsible for activating apocynin by generating its dimer, diapocynin, which is supposed to be the active compound that prevents NADPH oxidase complex assembly and activation. Here, we synthesized diapocynin and studied its effect on inhibition of gp91(phox) RNA expression. We found that diapocynin strongly inhibited the expression of gp91(phox)mRNA in peripheral blood mononuclear cells (PBMC). Only at a higher concentration, apocynin was able to exert the same effect. We also compared the apocynin and diapocynin efficacy as inhibitors of tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) production in response to lipopolysaccharide (LPS)-activated PBMC. Although apocynin did inhibit TNF-alpha production, diapocynin had a much more pronounced effect, on both TNF-alpha and IL-10 production. In conclusion, these findings suggest that the bioconversion of apocynin to diapocynin is an important issue not limited to enzymatic activity inhibition, but also for other biological effects as gp91(phox) mRNA expression and cytokine production. Hence, as diapocynin can be easily prepared from apocynin, a one-step synthesis, we recommend its use in studies where the biological effects of apocynin are searched. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated the functional role of nuclear factor-kappa B (NF-kappa B) in respiratory burst activity and in expression of the human phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes CYBB, CYBA, NCF1, and NCF2. U937 cells with a stably transfected repressor of NF-kappa B (IKB alpha-S32A/S36A) demonstrated significantly lower superoxide release and lower CYBB and NCF1 gene expression compared with control U937 cells. We further tested Epstein-Barr virus (EBV)-transformed B cells from patients with anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), an inherited disorderof NF-kappa B function. Superoxide release and CYBB gene expression by EDA-ID cells were significantly decreased compared with healthy cells and similar to cells from patients with X-linked chronic granulomatous disease (X91 degrees CGD). NCF1 gene expression in EDA-ID S321 cells was decreased compared with healthy control cells and similar to that in autosomal recessive (A47 degrees) CGD cells. Gel shift assays demonstrated loss of recombinant human p50 binding to a NF-kappa B site 5` to the CYBB gene in U937 cells treated with NF-kappa B inhibitors, repressor-transfected U937 cells, and EDA-ID patients cells. Zymosan phagocytosis was not affected by transfection of U937 cells with the NF-kappa B repressor. These studies show that NF-kappa B is necessary for CYBB and NCF1 gene expression and activation of the phagocyte NADPH oxidase in this model system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS) has been reported to be involved with both bone healing and bone metabolism. The aim of this study was to test the null hypothesis that there is no correlation between new bone formation during mandibular distraction osteogenesis and NOS expression in the trigeminal ganglion of rats. Newly formed tissue during distraction osteogenesis and trigeminal NOS expression measured by the NADPH-diaphorase (NADPH-d) reaction were evaluated in 72 male Wistar rats by histomorphometric and histochemical methods. In animals submitted to 0.5 mm/day distraction osteogenesis, the percentage of bone tissue was higher in the basal area of the mandibles compared with the center and significantly increased through the experimental periods (P < 0.05). At the sixth postoperative week, the difference in bone formation between the continuous and acute distraction osteogenesis groups was the highest. Significant correlation between new bone formation by distraction osteogenesis and NADPH-d-reactive neurons was found, varying according to neuronal cell size (r = -0.6, P = 0.005, small cells strongly stained; r = 0.5, P = 0.018, large cells moderately stained). The results suggest that NOS may play a role in the bone healing process via neurogenic pathways, and the phenomenon seems to be neuronal cell morphotype-dependent. Further studies are now warranted to investigate the mechanistic link between the expression of trigeminal NOS and mandibular new bone formation by distraction osteogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) is a chemical messenger generated by the activity of the nitric oxide synthases (NOS). The NOS/NO system appears to be involved in oocyte maturation, but there are few studies on gene expression and protein activity in oocytes of cattle. The present study aimed to investigate gene expression and protein activity of NOS in immature and in vitro matured oocytes of cattle. The influence of pre-maturation culture with butyrolactone I in NOS gene expression was also assessed. The following experiments were performed: (1) detection of the endothelial (eNOS) and inducible (iNOS) isoforms in the ovary by immunohistochemistry; (2) detection of eNOS and iNOS in the oocytes before and after in vitro maturation (W) by immunofluorescence; (3) eNOS and iNOS mRNA and protein in immature and in vitro matured oocytes, with or without pre-maturation, by real time PCR and Western blotting, respectively; and (4) NOS activity in immature and in vitro matured oocytes by NADPH-diaphorase. eNOS and iNOS were detected in oocytes within all follicle categories (primary, secondary and tertiary), and other compartments of the ovary and in the cytoplasm of immature and in vitro matured oocytes. Amount of mRNA for both isoforms decreased after IVM but was maintained after pre-maturation culture. The NOS protein was detected in immature (pre-mature or not) and was still detected in similar amount after pre-maturation and maturation for both isoforms. NOS activity was detected only in part of the immature oocytes. In conclusion, isoforms of NOS (eNOS and iNOS) are present in oocytes of cattle from early folliculogenesis up to maturation; in vitro maturation influences amount of mRNA and NOS activity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes mellitus is the most common endocrine disturbance of domestic carnivores and can cause autonomic neurological disorders, although these are still poorly understood in veterinary medicine. There is little information available on the quantitative adaptation mechanisms of the sympathetic ganglia during diabetes mellitus in domestic mammals. By combining morphometric methods and NADPH-diaphorase staining (as a possible marker for nitric oxide producing neurons), type I diabetes mellitus-related morphoquantitative changes were investigated in the celiac ganglion neurons in dogs. Twelve left celiac ganglia from adult female German shepherd dogs were examined: six ganglia were from non-diabetic and six from diabetic subjects. Consistent hypertrophy of the ganglia was noted in diabetic animals with increase of 55% in length, 53% in width, and 61.5% in thickness. The ordinary microstructure of the ganglia was modified leading to an uneven distribution of the ganglionic units and a more evident distribution of axon fascicles. In contrast to non-diabetic dogs, there was a lack of NADPH-diaphorase perikarial labelling in the celiac ganglion neurons of diabetic animals. The morphometric study showed that both the neuronal and nuclear sizes were significantly larger in diabetic dogs (1.3 and 1.39 times, respectively). The profile density and area fraction of NADPH-diaphorase-reactive celiac ganglion neurons were significantly larger (1.35 and 1.48 times, respectively) in non-diabetic dogs compared to NADPH-diaphorase-non-reactive celiac ganglion neurons in diabetic dogs. Although this study suggests that diabetic neuropathy is associated with neuronal hypertrophy, controversy remains over the possibility of ongoing neuronal loss and the functional interrelationship between them. It is unclear whether neuronal hypertrophy could be a compensation mechanism for a putative neuronal loss during the diabetes mellitus. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Role of reactive oxygen species (ROS)/nitric oxide (NO) balance and renin-angiotensin system in mediating cardiac hypertrophy in hyperthyroidism was evaluated in an in vivo and in vitro experimental model. Male Wistar rats were divided into four groups: control, thyroid hormone, vitamin E (or Trolox, its hydrosoluble analogue), thyroid hormone + vitamin E. Angiotensin II receptor (AT1/AT2) gene expression, immunocontent of AT1/AT2 receptors, angiotensinogen, NADPH oxidase (Nox2), and nitric oxide synthase isoforms, as well as ROS concentration (hydrogen peroxide and superoxide anion) were quantified in myocardium. Thyroid hormone increased ROS and NO metabolites, iNOS, nNOS and eNOS isoforms and it was accompanied by cardiac hypertrophy. AT1/AT2 expression and the immunocontent of angiotensinogen and Nox2 were enhanced by thyroid hormone. Antioxidants reduced ROS levels, Nox2, AT1/AT2, NOS isoforms and cardiac hypertrophy. In conclusion, ROS/NO balance may play a role in the control of thyroid hormone-induced cardiac hypertrophy mediated by renin-angiotensin system. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olfactory information modulates innate and social behaviors in rodents and other species. Studies have shown that the medial nucleus of the amygdala (MEA) and the ventral premammillary, nucleus (PMV) are recruited by conspecific odor stimulation. However, the chemical identity of these neurons is not determined. We exposed sexually inexperienced male rats to female or male odors and assessed Fos immunoreactivity (Fos-ir) in neurons expressing NADPH diaphorase activity (NADPHd, a nitric oxide synthase), neuropeptide Urocortin 3, or glutamic acid decarboxylase rnRNA (GAD-67, a GABA-synthesizing enzyme) in the MEA and PMV. Male and female odors elicited Fos-ir in the MEA and PMV neurons, but the number of Fos-immunoreactive neurons was higher following female odor exposure, in both nuclei. We found no difference in odor induced Fos-ir ill the MEA and PMV comparing fed and fasted animals. Ill the MEA, NADPHd neurons colocalized Fos-ir only in response to female odors. In addition, Urocortin 3 neurons comprise a distinct population and they do not express Fos-ir after conspecific odor stimulation. We found that 80% of neurons activated by male odors coexpressed GAD-67 mRNA. Following female odor, 50% of Fos neurons coexpressed GAD-67 rnRNA. The PMV expresses very little GAD-67, and virtually no colocalization with Fos was observed. We found intense NADPHd activity in PMV neurons, some of which coexpressed Fos-ir after exposure to both odors. The majority of the PMV neurons expressing NADPHd colocalized cocaine-and amphetamine-regulated transcript (CART). Our findings suggest that female and male odors engage distinct neuronal populations in the MEA, thereby inducing contextualized behavioral responses according to olfactory cues. In the PMV, NADPHd/CART neurons respond to male and female odors, suggesting a role in neuroendocrine regulation in response to olfactory cues. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The practice of regular exercise is indicated to prevent some motility disturbances in the gastrointestinal tract, such as constipation, during aging. The motility alterations are intimately linked with its innervations. The goal of this study is to determine whether a program of exercise (running on the treadmill), during 6 months, has effects in the myenteric neurons (NADH- and NADPH-diaphorase stained neurons) in the colon of rats during aging. Male Wister rats 6 months (adult) and 12 months (middle-aged) old were divided into 3 different groups: AS (adult sedentary), MS (middle-aged sedentary) and MT (middle-aged submitted to physical activity). The aging did not cause a decline significant (p > 0.05) of the number of NADH-diaphorase stained neurons in sedentary rats (AS vs. MS group). In contrast, a decline of 3 1% was observed to NADPH-diaphorase stained neurons. Thus, animals that underwent physical activity (AS vs. MT group) rescued neurons from degeneration caused by aging (total number, density and profile of neurons did not change with age - NADH-diaphorase method). On the other hand, physical activity augmented the decline of NADPH-diaphorase positive neurons (total number, density and profile of neurons decreased). Collectively, the results show that exercise inhibits age-related decline of myenteric neurons however, exercise augments the decline of neurons with inhibitory activity (nitric oxide) in the colon of the rats. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The architecture of the amygdaloid complex of a marsupial, the opossum Didelphis aurita, was analyzed using classical stains like Nissl staining and myelin (Gallyas) staining, and enzyme histochemistry for acetylcholinesterase and NADPH-diaphorase. Most of the subdivisions of the amygdaloid complex described in eutherian mammals were identified in the opossum brain. NADPH-diaphorase revealed reactivity in the neuropil of nearly all amygdaloid subdivisions with different intensities, allowing the identification of the medial and lateral subdivisions of the cortical posterior nucleus and the lateral subdivision of the lateral nucleus. The lateral, central, basolateral and basomedial nuclei exhibited acetylcholinesterase positivity, which provided a useful chemoarchitectural criterion for the identification of the anterior basolateral nucleus. Myelin stain allowed the identification of the medial subdivision of the lateral nucleus, and resulted in intense staining of the medial subdivisions of the central nucleus. The medial, posterior, and cortical nuclei, as well as the amygdalopiriform area did not exhibit positivity for myelin staining. On the basis of cyto- and chemoarchitectural criteria, the present study highlights that the opossum amygdaloid complex shares similarities with that of other species, thus supporting the idea that the organization of the amygdala is part of a basic plan conserved through mammalian evolution. (C) 2008 Elsevier Inc. All rights reserved.