2 resultados para Ipomoea batatas

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, limited numbers of dental calculus samples have been analyzed by researchers in diverse parts of the world. The combined analyses of these have provided some general guidelines for the analysis of calculus that is non-destructive to archaeological teeth. There is still a need for a quantitative study of large numbers of calculus samples to establish protocols, assess the level of contamination, evaluate the quantity of microfossils in dental calculus, and to compare analysis results with the literature concerning the biology of calculus formation. We analyzed dental calculus from 53 teeth from four Brazilian sambaquis. Sambaquis are the shell-mounds that were established prehistorically along the Brazilian coast. The analysis of sambaqui dental calculi shows that there are relatively high concentrations of microfossils (phytoliths and starch), mineral fragments, and charcoal in dental calculus. Mineral fragments and charcoal are possibly contaminants. The largest dental calculi have the lowest concentrations of microfossils. Biologically, this is explained by individual variation in calculus formation between people. Importantly, starch is ubiquitous in dental calculus. The starch and phytoliths show that certainly Dioscorea (yam) and Araucaria angustifolia (Parana pine) were eaten by sambaqui people. Araceae (arum family), Ipomoea batatas (sweet potato) and Zea mays (maize) were probably in their diet. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A short and efficient approach to a range of new chiral and achiral functionalized (E)-enaminopyran-2,4-diones starting with commercially available dehydroacetic acid is described. The phytotoxic properties of these (E)-enaminopyran-2,4-diones were evaluated by their ability to interfere with the growth of Sorghum bicolor and Cucumis sativus seedlings. A different sensitivity of the two crops was evident with the (E)-enaminopyran-2,4-diones. The most active compounds were also tested against two weeds, Ipomoea grandifolia and Brachiaria decumbens. To the best of our knowledge, this is the first report describing enaminopyran-2,4-diones as potential plant growth regulators.