17 resultados para injury


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IR) is an antigen independent inflammatory process that causes tissue damage. After IR, kidneys up-regulate leukocyte adhesion molecules and toll-like receptors (TLRs). Moreover, injured kidneys can also secrete factors (i.e. heat shock protein) which bind to TLRs and trigger intracellular events culminating with the increase in the gene expression of inflammatory cytokines. FTY720 is an immunomodulatory compound and protects at least in part kidneys submitted to IR. The mechanisms associated with FTY720`s beneficial effects on kidneys after IR remain elusive. We investigated whether FTY720 administration in mice submitted to kidney IR is associated with modulation of TLR2 and TLR4 expression. C57BL/6 mice submitted to 30 min of renal pedicles clamp were evaluated for serum parameters (creatinine, urea and nitric oxide), kidney histology, spleen and kidney infiltrating cells expression of TLR2 and TLR4, resident kidney cells expression of TLR2 and TLR4 and IL-6 protein expression in kidney. FTY720-treated mice presented decrease in serum creatinine, urea and nitric oxide, diminished expression of TLR2 and TLR4 both in spleen and kidney infiltrating cells, and reduced kidney IL-6 protein expression in comparison with IR non-treated mice. However, acute tubular necrosis was present both in IR non-treated and IR + FTY720-treated groups. Also, FTY720 did not prevent TLR2 and TLR4 expression in kidney resident cells. In conclusion, FTY720 can promote kidney function recovery after IR by reducing the inflammatory process. Further studies are needed in order to establish whether TLR2 and TLR4 down regulation should be therapeutically addressed as protective targets of renal function and structure after IR. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.