3 resultados para COMPOSITES

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the evaluation of raw keratin as a potential material to develop composites with novel characteristics. Herein, we report a mild and eco-friendly fabrication of in-house extracted feather keratin-based novel enzyme assisted composites consisting of ethyl cellulose (EC) as a backbone material. A range of composites between keratin and EC using different keratin: EC ratios were prepared and characterised. Comparing keratin to the composites, the FT-IR peak at 1,630 cm-1 shifted to a lower wavenumber of 1,610 cm-1 in keratin-EC which typically indicates the involvement of β-sheet structures of the keratin during the graft formation process. SEM analysis revealed that the uniform dispersion of the keratin increases the area of keratin-EC contact which further contributes to the efficient functionality of the resulting composites. In comparison to the pristine keratin and EC, a clear shift in the XRD peaks was also observed at the specific region of 2-Theta values of keratin-g-EC. The thermo- mechanical properties of the composites reached their highest levels in comparison to the keratin which was too fragile to be measured for its mechanical properties. Considerable improvement in the water contact angle and surface tension properties was also recorded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the development of highly inspired biomaterials with multi-functional characteristics has gained considerable attention, especially in biomedical, and other health-related areas of the modern world. It is well-known that the lack of antibacterial potential has significantly limited biomaterials for many challenging applications such as infection free wound healing and/or tissue engineering etc. In this perspective, herein, a series of novel bio-composites with natural phenols as functional entities and keratin-EC as a base material were synthesised by laccase-assisted grafting. Subsequently, the resulting composites were removed from their respective casting surfaces, critically evaluated for their antibacterial and biocompatibility features and information is also given on their soil burial degradation profile. In-situ synthesised phenol-g-keratin-EC bio-composites possess strong anti-bacterial activity against Gram-positive and Gram-negative bacterial strains i.e., B. subtilis NCTC 3610, P. aeruginosa NCTC 10662, E. coli NTCT 10418 and S. aureus NCTC 6571. More specifically, 10HBA-g-keratin-EC and 20T-g-keratin-EC composites were 100% resistant to colonisation against all of the aforementioned bacterial strains, whereas, 15CA-g-keratin-EC and 15GA-g-keratin-EC showed almost negligible colonisation up to a variable extent. Moreover, at various phenolic concentrations used, the newly synthesised composites remained cytocompatible with human keratinocyte-like HaCaT, as an obvious cell ingrowth tendency was observed and indicated by the neutral red dye uptake assay. From the degradation point of view, an increase in the degradation rate was recorded during their soil burial analyses. Our investigations could encourage greater utilisation of natural materials to develop bio-composites with novel and sophisticated characteristics for potential applications.