3 resultados para scaffold

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chiral primary amines containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a pyrimidin-2-yl unit are synthesized and used as general organocatalysts for the Michael reaction of α-branched aldehydes to maleimides. The reaction takes place with 10 mol% organocatalyst loading and hexanedioic acid as cocatalyst in aqueous N,N-dimethylformamide at 10 °C affording the corresponding succinimides in good yields and enantioselectivities. DFT calculations support the stereochemical results and the role played by the solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifunctional chiral primary amine 8 containing an (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-benzimidazole unit is used as a general organocatalyst for the Michael addition of α,α-branched aldehydes to nitroalkenes and maleimides. The reactions take place, with 20 mol % of catalyst in dichloromethane at rt for nitroalkenes and with 15 mol % catalyst loading in toluene at 10 °C for maleimides, in good yields and enantioselectivities. DFT calculations demonstrate the bifunctional character of this organocatalyst activating the aldehyde by enamine formation and the Michael acceptor by double hydrogen bonding.