2 resultados para Quantitative PCR

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The haloarchaeon Haloferax mediterranei is able to grow in the presence of different inorganic and organic nitrogen sources by means of the assimilatory pathway under aerobic conditions. In order to identify genes of potential importance in nitrogen metabolism and its regulation in the halophilic microorganism, we have analysed its global gene expression in three culture media with different nitrogen sources: (a) cells were grown stationary and exponentially in ammonium, (b) cells were grown exponentially in nitrate, and (c) cells were shifted to nitrogen starvation conditions. The main differences in the transcriptional profiles have been identified between the cultures with ammonium as nitrogen source and the cultures with nitrate or nitrogen starvation, supporting previous results which indicate the absence of ammonium as the factor responsible for the expression of genes involved in nitrate assimilation pathway. The results have also permitted the identification of transcriptional regulators and changes in metabolic pathways related to the catabolism and anabolism of amino acids or nucleotides. The microarray data was validated by real-time quantitative PCR on 4 selected genes involved in nitrogen metabolism. This work represents the first transcriptional profiles study related to nitrogen assimilation metabolism in extreme halophilic microorganisms using microarray technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fungal parasite of nematode eggs Pochonia chlamydosporia is also a root endophyte known to promote growth of some plants. In this study, we analysed the effect of nine P. chlamydosporia isolates from worldwide origin on tomato growth. Experiments were performed at different scales (Petri dish, growth chamber and greenhouse conditions) and developmental stages (seedlings, plantlets and plants). Seven P. chlamydosporia isolates significantly (P < 0.05) increased the number of secondary roots and six of those increased total weight of tomato seedlings. Six P. chlamydosporia isolates also increased root weight of tomato plantlets. Root colonisation varied between different isolates of this fungus. Again P. chlamydosporia significantly increased root growth of tomato plants under greenhouse conditions and reduced flowering and fruiting times (up to 5 and 12 days, respectively) versus uninoculated tomato plants. P. chlamydosporia increased mature fruit weight in tomato plants. The basis of the mechanisms for growth, flowering and yield promotion in tomato by the fungus are unknown. However, we found that P. chlamydosporia can produce Indole-3-acetic acid and solubilise mineral phosphate. These results suggest that plant hormones or nutrient ability could play an important role. Our results put forward the agronomic importance of P. chlamydosporia as biocontrol agent of plant parasitic nematodes with tomato growth promoting capabilities.