7 resultados para Precursor eritróide

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results show that it is possible to activate a low softening point isotropic petroleum pitch, without intermediate pre-treatments, by chemical activation with KOH. The chemical activation is carried out by direct heat treatment of a mixture of the isotropic pitch and KOH. It produces activated carbons (ACs) with micropore volumes as high as 1.12 cm3/g, and BET surface areas around 3000 m2/g. The activating agent/precursor ratios studied (from 1/1 to 4/1; wt./wt.) show, as expected, that increasing the ratio enhances the adsorption characteristics of the resulting AC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX > PdNRX > PtClRX ≫ RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX = PdNRX > RuClRX > PtClRX, and it can be mainly attributed to thermodynamic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced porous materials with tailored porosity (extremely high development of microporosity together with a narrow micropore size distribution (MPSD)) are required in energy and environmental related applications. Lignocellulosic biomass derived HTC carbons are good precursors for the synthesis of activated carbons (ACs) via KOH chemical activation. However, more research is needed in order to tailor the microporosity for those specific applications. In the present work, the influence of the precursor and HTC temperature on the porous properties of the resulting ACs is analyzed, remarking that, regardless of the precursor, highly microporous ACs could be generated. The HTC temperature was found to be an extremely influential parameter affecting the porosity development and the MPSD of the ACs. Tuning of the MPSD of the ACs was achieved by modification of the HTC temperature. Promising preliminary results in gas storage (i.e. CO2 capture and high pressure CH4 storage) were obtained with these materials, showing the effectiveness of this synthesis strategy in converting a low value lignocellulosic biomass into a functional carbon material with high performance in gas storage applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported metals are traditionally prepared by impregnating a support material with the metal precursor solution, followed by reduction in hydrogen at elevated temperatures. In this study, a polymeric support has been considered. Polypyrrole (PPy) has been chemically synthesized using FeCl3 as a doping agent, and it has been impregnated with a H2PtCl6 solution to prepare a catalyst precursor. The restricted thermal stability of polypyrrole does not allow using the traditional reduction in hydrogen at elevated temperature, and chemical reduction under mild conditions using sodium borohydride implies environmental concerns. Therefore, cold RF plasma has been considered an environmentally friendly alternative. Ar plasma leads to a more effective reduction of platinum ions in the chloroplatinic complex anchored onto the polypyrrole chain after impregnation than reduction with sodium borohydride, as has been evidenced by XPS. The increase of RF power enhanced the effectiveness of the Ar plasma treatment. A homogeneous distribution of platinum nanoparticles has been observed by TEM after the reduction treatment with plasma. The Pt/polypyrrol catalyst reduced by Ar plasma at 200 watts effectively catalyzed the aqueous reduction of nitrates with H2 to yield N2, with a very low selectivity to undesired nitrites and ammonium by-products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Koninckinids are a suitable group to shed light on the biotic crisis suffered by brachiopod fauna in the Early Jurassic. Koninckinid fauna recorded in the late Pliensbachian–early Toarcian from the easternmost Subbetic basin is analyzed and identified as a precursor signal for one of the most conspicuous mass extinction events of the Phylum Brachiopoda, a multi-phased interval with episodes of changing environmental conditions, whose onset can be detected from the Elisa–Mirabile subzones up to the early Toarcian extinction boundary in the lowermost Serpentinum Zone (T-OAE). The koninckinid fauna had a previously well-established migration pattern from the intra-Tethyan to the NW-European basins but a first phase with a progressive warming episode in the Pliensbachian–Toarcian transition triggered a koninckinid fauna exodus from the eastern/central Tethys toward the westernmost Mediterranean margins. A second stage shows an adaptive response to more adverse conditions in the westernmost Tethyan margins and finally, an escape and extinction phase is detected in the Atlantic areas from the mid-Polymorphum Zone onwards up to their global extinction in the lowermost Serpentinum Zone. This migration pattern is independent of the paleogeographic bioprovinciality and is unrelated to a facies-controlled pattern. The anoxic/suboxic environmental conditions should only be considered as a minor factor of partial control since well-oxygenated habitats are noted in the intra-Tethyan basins and this factor is noticeable only in the second westward migratory stage (with dwarf taxa and oligotypical assemblages). The analysis of cold-seep proxies in the Subbetic deposits suggests a radiation that is independent of methane releases in the Subbetic basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the metal precursor (presence or absence of chlorine) on the preferential oxidation of CO in the presence of H2 over Pt/CeO2 catalysts has been studied. The catalysts are prepared using (Pt(NH3)4)(NO3)2 and H2PtCl6, as precursors, in order to ascertain the effect of the chlorine species on the chemical properties of the support and on the catalytic behavior of these systems in the PROX reaction. The results show that chloride species exert an important effect on the redox properties of the oxide support due to surface chlorination. Consequently, the chlorinated catalyst exhibits a poorer catalytic activity at low temperatures compared with the chlorine-free catalyst, and this is accompanied by a higher selectivity to CO2 even at high reaction temperatures. It is proposed that the CO oxidation mechanism follows different pathways on each catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-supported Pt x –Rh y –Sn z catalysts (x:y:z = 3:1:4, 6:2:4, 9:3:4) are prepared by Pt, Rh, and Sn precursors reduction in different addition order. The materials are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and are evaluated for the electrooxidation of ethanol in acidic media by cyclic voltammetry, chronoamperometry, and anode potentiostatic polarization. The influence of both the order in which the precursors are added and the composition of metals in the catalysts on the electrocatalytic activity and physico-chemical characteristics of Pt x –Rh y –Sn z /C catalysts is evaluated. Oxidized Rh species prevail on the surface of catalysts synthesized by simultaneous co-precipitation, thus demonstrating the influence of synthesis method on the oxidation state of catalysts. Furthermore, high amounts of Sn in composites synthesized by co-precipitation result in very active catalysts at low potentials (bifunctional effect), while medium Sn load is needed for sequentially deposited catalysts when the electronic effect is most important (high potentials), since more exposed Pt and Rh sites are needed on the catalyst surface to alcohol oxidation. The Pt3–Rh1–Sn4/C catalyst prepared by co-precipitation is the most active at potentials lower than 0.55 V (related to bifunctional effect), while the Pt6–Rh2–Sn4/C catalyst, prepared by sequential precipitation (first Rh and, after drying, Pt + Sn), is the most active above 0.55 V.