11 resultados para Biodegradable

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) plasticized with a lactic acid oligomer (OLA) added at three different concentrations (15, 20 and 30 wt% by weight), were prepared by an optimized extrusion process to improve the processability and mechanical properties of these biopolymers for flexible film manufacturing. Morphological, chemical, thermal, mechanical, barrier and migration properties were investigated and formulations with desired performance in eco-friendly films were selected. The efficiency of OLA as plasticizer for PLA_PHB blends was demonstrated by the significant decrease of their glass transition temperatures and a considerable improvement of their ductile properties. The measured improvements in the barrier properties are related to the higher crystallinity of the plasticized PLA_PHB blends, while the overall migration test underlined that all the proposed formulations maintained migration levels below admitted levels. The PLA_PHB blend with 30 wt% OLA was selected as the optimum formulation for food packaging, since it offered the best compromise between ductility and oxygen and water vapor barrier properties with practically no migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-friendly alternatives in applications such as food packaging. In this work, silver nanoparticles and thymol were used as active additives in PLA matrices, combining the antibacterial activity of silver with the antioxidant performance of thymol. The combined action of both additives influenced PLA thermal degradation in ternary systems. DSC results showed that the addition of thymol resulted in a clear decrease of the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA matrices. Slight modifications in mechanical properties of dog-bone bars were also observed after the addition of the active components, especially in the elastic modulus. FESEM analyses showed the good distribution of active additives through the PLA matrix, obtaining homogenous surfaces and highlighting the presence of silver nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-based nanocomposites with thymol and silver nanoparticles in composting conditions indicated that the inherent biodegradable character of this biopolymer was improved after this modification. The obtained nanocomposites showed suitable properties to be used as biodegradable active-food packaging systems with antioxidant and antimicrobial effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(lactic acid) (PLA) was melt-blended with a bio-based oligomeric lactic acid (OLA) plasticizer at different concentrations between 15 wt% and 25 wt% in order to enhance PLA ductility and to get a fully biodegradable material with potential application in films manufacturing. OLA was an efficient plasticizer for PLA, as it caused a significant decrease on glass transition temperature (Tg) while improving considerably ductile properties. Only one Tg value was observed in all cases and no apparent phase separation was detected. Films obtained by compression moulding were stored during 3 months under ambient controlled conditions and thermal, mechanical, structural and oxygen barrier properties were studied in order to evaluate the stability of the PLA–OLA films over time. Blends with 20 and 25 wt% OLA remained stable and compatible with PLA within the ageing period. Besides, PLA–20 wt% OLA formulation was the only one which maintained its amorphous state with adequate thermal, mechanical and oxygen barrier properties for flexible films manufacturing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disintegration under composting conditions of films based on poly(lactic acid)–poly(hydroxybutyrate) (PLA–PHB) blends and intended for food packaging was studied. Two different plasticizers, poly(ethylene glycol) (PEG) and acetyl-tri-n-butyl citrate (ATBC), were used to limit the inherent brittleness of both biopolymers. Neat PLA, plasticized PLA and PLA–PHB films were processed by melt-blending and compression molding and they were further treated under composting conditions in a laboratory-scale test at 58 ± 2 °C. Disintegration levels were evaluated by monitoring their weight loss at different times: 0, 7, 14, 21 and 28 days. Morphological changes in all formulations were followed by optical and scanning electron microscopy (SEM). The influence of plasticizers on the disintegration of PLA and PLA–PHB blends was studied by evaluating their thermal and nanomechanical properties by thermogravimetric analysis (TGA) and the nanoindentation technique, respectively. Meanwhile, structural changes were followed by Fourier transformed infrared spectroscopy (FTIR). The ability of PHB to act as nucleating agent in PLA–PHB blends slowed down the PLA disintegration, while plasticizers speeded it up. The relationship between the mesolactide to lactide forms of PLA was calculated with a Pyrolysis–Gas Chromatography–Mass Spectrometry device (Py–GC/MS), revealing that the mesolactide form increased during composting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of fully bio-based and biodegradable materials for massive applications, such as food packaging, is an emerging tendency in polymer research. But the formulations proposed in this way should preserve or even increase the functional properties of conventional polymers, such as transparency, homogeneity, mechanical properties and low migration of their components to foodstuff. This is not always trivial, in particular when brittle biopolymers, such as poly(lactic acid) (PLA), are considered. In this work the formulation of innovative materials based on PLA modified with highly compatible plasticizers, i.e. oligomers of lactic acid (OLAs) is proposed. Three different synthesis conditions for OLAs were tested and the resulting additives were further blended with commercial PLA obtaining transparent and ductile materials, able for films manufacturing. These materials were tested in their structural, thermal and tensile properties and the best formulation among the three materials was selected. OLA with molar mass (Mn) around 1,000 Da is proposed as an innovative and fully compatible and biodegradable plasticizer for PLA, able to replace conventional plasticizers (phthalates, adipates or citrates) currently used for films manufacturing in food packaging applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new nano-biocomposites has been one of the main research areas of interest in polymer science in recent years, since they can combine the intrinsic biodegradable nature of matrices with the ability to modify their properties by the addition of selected nano-reinforcements. In this work, the addition of mineral nanoclays (montmorillonites and sepiolites) to a commercial starch-based matrix is proposed. A complete study on their processing by melt-intercalation techniques and further evaluation of the main properties of nano-biocomposites has been carried out. The results reported show an important influence of the nano-biocomposites morphology on their final properties. In particular, the rheological and viscoelastic characteristics of these systems are very sensitive to the dispersion level of the nanofiller, but it is possible to assess that the material processing behaviour is not compromised by the presence of these nano-reinforcements. In general, both nanofillers had a positive influence in the materials final properties. Mechanical performance shows improvements in terms of elastic modulus, without important limitations in terms of ductility. Thermal properties are improved in terms of residual mass after degradation and low improvements are also observed in terms of oxygen barrier properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se ha utilizado una planta de tratamiento a escala laboratorio consiste en un biorreactor de membrana (MBR). Esta planta está compuesta por un reactor biológico de 25 L de capacidad. Se utilizó una membrana plana de micro filtración marca Kubota de polietileno clorado, tamaño de poro 0,1 μm y área de filtración 0.116 m2. Se utilizaron como condiciones de operación: tiempo de residencia hidráulico 3 días, caudal de permeado 0.35 L/h y LMH 3 L/m2h. Se ha podido comprobar que es posible adaptar una población microbiológica a las particulares características químicas del lixiviado procedente de la planta y tratar estos lixiviados en un reactor biológico de membrana sumergida operando en condiciones habituales de sólidos en suspensión en el reactor entre 8-12 g/L durante un periodo de 6 meses. El proceso utilizado permite reducir la materia orgánica (97% DBO5 y 40% DQO) presente en estas corrientes residuales, agotando prácticamente toda la materia biodegradable. Respecto a los contenidos de nutrientes, el tratamiento MBR ensayado permite reducir de 35-40% el nitrógeno total, 45-50% el nitrógeno amoniacal y un 65-70% el fósforo total. Los sólidos en suspensión se han reducido en el efluente tratado en más de un 99%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interest and societal demand on the use of natural, biodegradable and renewable resources has increased in the last few years. In addition, food producers and consumers have improved their requirements for the quality of processed food, particularly in the field of increasing shelf-life while preserving organoleptic and nutritional properties. Active packaging technologies have greatly developed in the last decade by trying to satisfy the need for long-life processed food in addition to antioxidant/antimicrobial components in the packaging material. These components are intended to be released in a controlled way to food. These rising trends have been reflected in the field of food packaging by the use of chemicals extracted and obtained from plants in active packaging formulations. Herbs and spices have shown great potential to be used as renewable, biodegradable and valuable sources of chemicals, such as polyphenols, with high antioxidant/antimicrobial performance. This review aims to present the latest published work in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bio-based films formed by poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) plasticized with an oligomer of the lactic acid (OLA) were used as supporting matrices for an antibacterial agent (carvacrol). This paper reports the main features of the processing and physico-chemical characterization of these innovative biodegradable material based films, which were extruded and further submitted to filmature process. The effect of the addition of carvacrol and OLA on their microstructure, chemical, thermal and mechanical properties was assessed. The presence of these additives did not affect the thermal stability of PLA_PHB films, but resulted in a decrease in their crystallinity and in the elastic modulus for the active formulations. The obtained results showed the effective presence of additives in the PLA or the PLA_PHB matrix after processing at high temperatures, making them able to be used in active and bio-based formulations with antioxidant/antimicrobial performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most fashionable trends in food packaging research are targeted towards improvements in food quality and safety by increasing the use of environmentally-friendly materials, ideally those able to be obtained from bio-based resources and presenting biodegradable characteristics. Edible films represent a key area of development in new multifunctional materials by their character and properties to effectively protect food with no waste production. The use of edible films should be considered as a clean and elegant solution to problems related with waste disposal in packaging materials. In particular, pectin has been reported as one of the main raw materials to obtain edible films by its natural abundance, low cost and renewable character. The latest innovations in food packaging by the use of pectin-based edible films are reviewed in this paper, with special focus on the use of pectin as base material for edible coatings. The structure, properties related to the intended use in food packaging and main applications of pectins are herein reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopolymers do not have competitive prices, which has prevented their industrial exploitation on a global scale so far. In this context, Using nanoclays, improvements in certain biopolymer properties, mainly mechanical and thermal, have been achieved. However, research has been much less focused on changing optical properties through the incorporation of nanoclays. At the same time, current research has focused on obtaining nanopigments, by organic dyes adsoptions into different nanoclays in order to achieve sustainable colouring and high performance materials. By combining advances in these lines of research, biodegradable composites with optimal mechanical and optical properties can be obtained. The aim of this work is to find the optimal formulation of naturally sourced nanopigments, incorporate them into a biological origin epoxy resin, and obtain a significant improvement in their mechanical, and optical properties. We combine three structural modifiers in the nanopigment synthesis: surfactant, silane and mordant salt. The latter was selected in order to replicate the mordant textile dyeing with natural dyes. Using a Taguchi’s desing L8, we look for the effect of the presence of the modifiers, the pH acidification, and the interactions effect between the synthesis factors. Three natural dyes were selected: chlorophyll, beta-carotene, and beetroot extract. Furthermore we use two kinds of laminar nanoclays, differentiated by the ion exchange charge: montmorillonite, and hydrotalcite. Then the thermal, mechanical and colorimetric characterization of the bionanocomposite materials was carried out. The optimal conditions to obtain the best bionanocomposite materials are using acid pH, and modifying the nanoclays with mordant and surfactant.