4 resultados para Atraumatic restoration

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In occidental Europe, Spain is one of countries the most severely affected by desertification (Arnalds & Arsher 2000). Particularly, South-eastern Spain is considered as one of the most threatened areas by desertification in Mediterranean Europe (Vallejo 1997). In 2003, the Valencia Regional Forest Service implemented a restoration demonstration project in this area. The project site is a small catchment (25 ha) located in the Albatera municipality. The catchment is highly heterogeneous, with terraced slopes, south-facing slopes and north-facing slopes. The restoration strategy was based on planting evergreen trees and shrubs which can grow quickly after disturbances, and on field treatments aimed at maximizing water collection (micro-catchments, planting furrows), organic amendment (compost), and conservation (tree shelters, mulching). On south landscape unit, the whole category of restoration treatments was applied: water micro-catchment + Tubex tree shelters + mulching & compost, while on north landscape unit: netting tree shelters + mulching & compost only were applied, while in terrace landscape unit: furrows + netting tree shelters + mulching & compost were applied. Survival and growth of the planted seedlings were used as metrics of restoration success. To assess the effects of the treatments applied for soil conservation, soil loss rates (from 2005 to 2009) were evaluated using the erosion pin method. We conclude that, despite the limiting conditions prevailing on the south unit, this landscape unit showed the highest survival and growth plant rates in the area. The best seedling performances on the south landscape unit were probably due to the highest technical efforts applied, consisting in the water micro-catchment installation and the Tubex plant shelters addition. In addition, soil loss rates followed decreasing trends throughout the assessment period. Soil loss rates were highest on south landscape unit in comparison with the other landscape units, due to the more accentuated relief. North landscape unit and terrace unit showed a net soil mass gain, probably reflecting the trapping of sediments produced by plantation works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceptual frameworks of dryland degradation commonly include ecohydrological feedbacks between landscape spatial organization and resource loss, so that decreasing cover and size of vegetation patches result in higher water and soil losses, which lead to further vegetation loss. However, the impacts of these feedbacks on dryland dynamics in response to external stress have barely been tested. Using a spatially-explicit model, we represented feedbacks between vegetation pattern and landscape resource loss by establishing a negative dependence of plant establishment on the connectivity of runoff-source areas (e.g., bare soils). We assessed the impact of various feedback strengths on the response of dryland ecosystems to changing external conditions. In general, for a given external pressure, these connectivity-mediated feedbacks decrease vegetation cover at equilibrium, which indicates a decrease in ecosystem resistance. Along a gradient of gradual increase of environmental pressure (e.g., aridity), the connectivity-mediated feedbacks decrease the amount of pressure required to cause a critical shift to a degraded state (ecosystem resilience). If environmental conditions improve, these feedbacks increase the pressure release needed to achieve the ecosystem recovery (restoration potential). The impact of these feedbacks on dryland response to external stress is markedly non-linear, which relies on the non-linear negative relationship between bare-soil connectivity and vegetation cover. Modelling studies on dryland vegetation dynamics not accounting for the connectivity-mediated feedbacks studied here may overestimate the resistance, resilience and restoration potential of drylands in response to environmental and human pressures. Our results also suggest that changes in vegetation pattern and associated hydrological connectivity may be more informative early-warning indicators of dryland degradation than changes in vegetation cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heritage conservation has raised historical problems usually centered in defects resulting from water leaks. Thus, any intervention is presented as a difficult task, both due to building techniques to be used and the lack of economic resources in many cases. In relation to the temples existing in Alicante (Spain), water drainage is solved with pitched roofs on slope formation (in vaulted naves) or directly supported on the vaulted elements (in the domes). Since those construction systems are composed by brick and plaster, the presence of moisture is problematic, and represents a risk of losing the strength capacity and therefore the stability of the dome. An example of this problem is the dome of the church “Nuestra Señora de Belén” in Crevillente, built with solid bricks, it has the highest diameter of the province (18th century). This historic building has been restored on several occasions in the recent years due to moisture, cracks or fissures. The study of these works give an idea of the difficulties of maintenance, conservation and proper restoration of such kind of buildings as unique and valued constructions in our heritage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restoration efforts in the Mediterranean Basin have been changing from a silvicultural to an ecological restoration approach. Yet, to what extent the projects are guided by ecological restoration principles remains largely unknown. To analyse this issue, we built an on-line survey addressed to restoration practitioners. We analysed 36 restoration projects, mostly from drylands (86%). The projects used mainly soil from local sources. The need to comply with legislation was more important as a restoration motive for European Union (EU) than for non-EU countries, while public opinion and health had a greater importance in the latter. Non-EU countries relied more on non-native plant species than EU countries, thus deviating from ecological restoration guidelines. Nursery-grown plants used were mostly of local or regional provenance, whilst seeds were mostly of national provenance. Unexpected restoration results (e.g. inadequate biodiversity) were reported for 50% of the projects and restoration success was never evaluated in 22%. Long term evaluation (> 6 years) was only performed in 31% of cases, and based primarily on plant diversity and cover. The use of non-native species and species of exogenous provenances may: i) entail the loss of local genetic and functional trait diversity, critical to cope with drought, particularly under the predicted climate change scenarios, and ii) lead to unexpected competition with native species and/or negatively impact local biotic interactions. Absent or inappropriate monitoring may prevent the understanding of restoration trajectories, precluding adaptive management strategies, often crucial to create functional ecosystems able to provide ecosystem services. The overview of ecological restoration projects in the Mediterranean Basin revealed high variability among practices and highlighted the need for improved scientific assistance and information exchange, greater use of native species of local provenance, and more long-term monitoring and evaluation, including functional and ecosystem services' indicators, to improve and spread the practice of ecological restoration.