3 resultados para Amino Acids

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-Alkyl-α-amino esters undergo a domino reaction, based on the iminium cation generation, with paraformaldehyde, followed by a 1,3-dipolar cycloaddition of the stabilized azometh­ine ylide with another equivalent of formaldehyde. The resulting products are oxazolidines, which can be transformed after hydrolysis into α-hydroxymethyl α-amino acid or its derivatives. The diastereoselective 1,3-dipolar cycloaddition was performed using sarcosine (–)-menthyl or (–)-8-phenylmenthyl esters affording the cyclic product with moderate enantiomeric ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NCN palladium(II) complexes have been covalently attached to the N- and C-terminus of the dipeptide L-Phe-L-Va-OMe. Remarkably, the hydrolysis of the NCN-Pd(II) L-Val-OMe afforded the corresponding, palladated free amino acid without affecting the metal site. This deprotected amino acid could be coupled to any protein, enzyme or peptidic chain by simple peptide chemistry. This bioorganometallic systems were active as catalysts in the aldol reaction between methyl isocianate and benzaldehyde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to study the effect of root and foliar application of two commercial products containing amino acids from plant and animal origin on iron (Fe) nutrition of tomato seedlings cultivated in two nutrient media: lime and normal nutrient solutions. In the foliar-application experiment, each product was sprayed with 0.5 and 0.7 mL L–1 2, 7, 12, and 17 d after transplanting. In the root application experiment, 0.1 and 0.2 mL L–1 of amino acids products were added to the nutrient solutions. In both experiments, untreated control plants were included as well. Foliar and root application of the product containing amino acids from animal origin caused severe plant-growth depression and nonpositive effects on Fe nutrition were found. In contrast, the application of the product from plant origin stimulated plant growth. Furthermore, significantly enhanced root and leaf FeIII-chelate reductase activity, chlorophyll concentration, leaf Fe concentration, and FeII : Fe ratio were found in tomato seedlings treated with the product from plant origin, especially when the amino acids were directly applied to the roots. These effects were more evident in plants developed under lime-induced Fe deficiency. The positive results on Fe uptake may be related to the action of glutamic acid, the most abundant amino acid in the formulation of the product from plant origin.