13 resultados para tick saliva

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The saliva of ticks (Suborder Ixodida) is critical to their survival as parasites. A tick bite should result in strong responses from the host defence systems (haemostatic, immune and inflammatory) but tick saliva appears to have evolved to counter these responses. We review current knowledge of tick saliva components, with emphasis on those molecules confirmed to be present in the secreted saliva but including some that have only been confirmed to be present in salivary glands. About 50 tick saliva proteins that are well described in the literature are discussed. These saliva components include enzymes, enzyme inhibitors, amine-binding proteins and cytokine homologues that act as anti-haemostatic, anti-inflammatory or immuno-modulatory agents. Sequence comparisons are illustrated. The importance of tick saliva and the significance of the findings to date are also discussed. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No Abstract

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-year-old male neutered British Shorthair cat was treated for tick paralysis caused by L holocyclus. Ten days after discharge, the cat represented with left-sided congestive heart failure and was diagnosed with hypertrophic cardiomyopathy, characterised by diastolic dysfunction. It has been proposed that tick toxicity is associated with diastolic dysfunction and it is possible that residual toxin effects were a contributing factor to the development of left-sided congestive heart failure in this case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manuscript provides a summary of the results presented at a symposium organized to accumulate information on factors that influence the prevalence of acaricide resistance and tick-borne diseases. This symposium was part of the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP), held in New Orleans, LA, USA, during August 10-14, 2003. Populations of southern cattle ticks, Boophilus microplus, from Mexico have developed resistance to many classes of acaricide including chlorinated hydrocarbons (DDT), pyrethroids, organ ophosphates, and formamidines (amitraz). Target site mutations are the most common resistance mechanism observed, but there are examples of metabolic mechanisms. In many pyrethroid resistant strains, a single target site mutation on the Na+ channel confers very high resistance (resistance ratios: >1000x) to both DDT and all pyrethroid acaricides. Acetylcholine esterase affinity for OPs is changed in resistant tick populations. A second mechanism of OP resistance is linked to cytochrome P450 monooxygenase activity. A PCR-based assay to detect a specific sodium channel gene mutation that is associated with resistance to permethrin has been developed. This assay can be performed on individual ticks at any life stage with results available in a few hours. A number of Mexican strains of B. microplus with varying profiles of pesticide resistance have been genotyped using this test. Additionally, a specific metabolic esterase with permethrin-hydrolyzing activity, CzEst9, has been purified and its gene coding region cloned. This esterase has been associated with high resistance to permethrin in one Mexican tick population. Work is continuing to clone specific acetylcholinesterase (AChE) and carboxylesterase genes that appear to be involved in resistance to organophosphates. Our ultimate goal is the design of a battery of DNA- or ELISA-based assays capable of rapidly genotyping individual ticks to obtain a comprehensive profile of their susceptibility to various pesticides. More outbreaks of clinical bovine babesisois and anaplasmosis have been associated with the presence of synthetic pyrethroid (SP) resistance when compared to OP and amidine resistance. This may be the result of differences in the temporal and geographic patterns of resistance development to the different acaricides. If acaricide resistance develops slowly, herd immunity may not be affected. The use of pesticides for the control of pests of cattle other than ticks can affect the incidence of tick resistance and tick-borne diseases. Simple analytical models of tick- and tsetse-bome diseases suggest that reducing the abundance of ticks, by treating cattle with pyrethroids for example, can have a variety of effects on tick-bome diseases. In the worst-case scenario, the models suggest that treating cattle might not only have no impact on trypanosomosis but could increase the incidence of tick-bome disease. In the best-case, treatment could reduce the incidence of both trypanosomosis and tick-bome diseases Surveys of beef and dairy properties in Queensland for which tick resistance to amitraz was known were intended to provide a clear understanding of the economic and management consequences resistance had on their properties. Farmers continued to use amitraz as the major acaricide for tick control after the diagnosis of resistance, although it was supplemented with moxidectin (dairy farms) or fluazuron, macrocyclic lactones or cypermethrin/ chlorfenvinphos. (C) 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to uncertainty among cattle producers in Australia regarding the need to treat Bos indices and B. indicus crossbreeds, the scientific literature relating to the productivity effects of Boophilus microplus on cattle of all breeds was reviewed. Estimates of the mean effect of each engorging tick (damage coefficient, d) were made from a simple analysis of the reported data. On average, each engorging female tick is responsible for the loss of 1.37 +/- 0.25 g bodyweight in B. taunts cattle. The comparable value for B. taurus x B. indicus cattle is 1.18 +/- 0.21 g/engorging tick. These values were not statistically significantly different, indicating that if a threshold approach to tick control were taken, then the threshold number of standard ticks would be the same regardless of cattle genotype. No studies provided useable estimates of the effect of tick infestation on pure B. indices cattle. An economic threshold for treatment, below which acaricide application is not beneficial, can be predicted, using known values for the cost of acaricide application and the price of beef. However, the application of a threshold approach to control has not been embraced by government advisers and runs contrary to the accepted principals of strategic control programs. (C) 2006 Elsevier B.V. All rights reserved.