15 resultados para soil solution

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The incorporation of organic matter ( OM) in soils that are able to rapidly sorb applied phosphorus ( P) fertiliser reportedly increases P availability to plants. This effect has commonly been ascribed to competition between the decomposition products of OM and P for soil sorption sites resulting in increased soil solution P concentrations. The evidence for competitive inhibition of P sorption by dissolved organic carbon compounds, derived from the breakdown of OM, includes studies on the competition between P and (i) low molecular weight organic acids (LOAs), (ii) humic and fulvic acids, and (iii) OM leachates in soils with a high P sorption capacity. These studies, however, have often used LOAs at 1 - 100 mM, concentrations much higher than those in soils ( generally < 0.05 mM). The transience of LOAs in biologically active soils further suggests that neither their concentration nor their persistence would have a practical benefit in increasing P phytoavailability. Higher molecular weight compounds such as humic and fulvic acids also competitively inhibit P sorption; however, little consideration has been given to the potential of these compounds to increase the amount of P sorbed through metal - chelate linkages. We suggest that the magnitude of the inhibition of P sorption by the decomposition products of OM leachate is negligible at rates equivalent to those of OM applied in the field. Incubation of OM in soil has also commonly been reported as reducing P sorption in soil. However, we consider that the reported decreases in P sorption ( as measured by P in the soil solution) are not related to competition from the decomposition products of OM breakdown, but are the result of P release from the OM that was not accounted for when calculating the reduction in P sorption.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A solution culture experiment was conducted to examine the effect of Cu toxicity on Rhodes grass (Chloris gayana Knuth.), a pasture species used in mine-site rehabilitation. The experiment used dilute, solution culture to achieve external nutrient concentrations, which were representative of the soil solution, and an ion exchange resin to maintain stable concentrations of Cu in solution. Copper toxicity was damaging to plant roots, with symptoms ranging from disruption of the root cuticle and reduced root hair proliferation, to severe deformation of root structure. A reduction in root growth was observed at an external Cu concentration of < 1 mu M, with damage evident from an external concentration of 0.2 mu M. Critical to the success of this experiment, in quantitatively examining the relationship between external Cu concentration and plant response, was the use of ion exchange resin to buffer the concentration of Cu in solution. After some initial difficulty with pH control, stable concentrations of Cu in solution were maintained for the major period of plant growth. The development of this technique will facilitate future investigations of the effect of heavy metals on plants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A solution culture experiment was conducted to examine the effect of Cu toxicity on Rhodes grass (Chloris gayana), a pasture species used in mine site rehabilitation. The experiment used dilute, solution culture to achieve external nutrient concentrations which were representative of the soil solution, and ion exchange resins to maintain stable concentrations of Cu in solution. Copper toxicity was damaged plant roots, with symptoms ranging from disruption of the root cuticle and reduced root hair proliferation, to severe deformation of root structure. A reduction in root growth was observed at an external Cu concentration of

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High concentrations of ammonium (up to 0.1 cmol/kg) have been observed below 1 m depth in a Vertosol soil near Warra in south-eastern Queensland. This study examined whether ammonium leaching could be responsible for the ammonium accumulation observed in the Warra soil. This was done by using quantity/intensity (Q/I) relationships to compare the ammonium retention capacity of the Warra soil with other similar soils throughout the region that did not contain elevated subsoil ammonium concentrations. Analysis of Q/I curves revealed that in the concentration range studied, the amount of ammonium retained on high affinity adsorption sites in all 3 soils was low, and the Warra soil was not significantly different from the other 2 soils. The ability of the soils to retain ammonium in the soil solution against leaching [i.e. their potential buffer capacity (PBC)] did differ between soils and was greatest at Warra. This indicates that at any one time the Warra soil holds more ammonium on the exchange complex and less in solution than the other soils examined. It was concluded that ammonium is no more likely to leach through the surface horizons of the Warra soil than the other soils examined. Indeed, the data indicated that the Warra soil probably has greater capacity to retain ammonium against leaching due to its greater PBC. Consequently, it is considered unlikely that leaching of ammonium has been a major contributor to the subsoil ammonium concentrations at Warra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphorus-availability tests typically provide an indication of quantity of P available (Colwell bicarbonate-extractable P), or of the intensity of supply (0.01 M CaCl2-extractable P). The soil's capacity to buffer P is more difficult to assess, and is generally estimated using a P-adsorption curve. The diffusive gradient in thin films (DGT) approach may provide a simpler means of assessing a soil's ability to maintain soil solution P. Optimal extraction conditions were found to be 24 h exposure of DGT samplers to saturated soil. The DGT approach was evaluated on a range of 24 soils, some of which had high Colwell- (>100 mu g g(-1)) and Bray 1- (>30 mu g g(-1)) extractable P content, but showed a tomato (Lycopersicon esculentum Mill.) yield response to the addition of P fertilizer. The DGT approach provided an excellent separation of soils on which tomato showed a yield response, from those where fertilizer P did not increase dry-matter yield. Phosphorus accumulation was strongly correlated with soil solution P concentration and anion exchange resin-extractable P, but showed poor correlation with Colwell- or Bray 1-extractable P. The DGT P accumulation rate of 3.62 x 10(-7) to 4.79 x 10(-5) mol s(-1) m(-3) for the soils tested was comparable to the uptake rate of roots of tomato plants that were adequately supplied with P (2.25 x 10(-5) mol s(-1) m(-3)).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrate (NO3) accumulations (up to 1880 kg NO3-N/ha for a 12-m profile) in the soils of the Johnstone River catchment (JRC) may pose a serious environmental threat to the Great Barrier Reef lagoon if the NO3 were released. The: leaching of artificial rainwater through repacked soil columns was investigated to determine the effect of low NO3/low ionic strength inputs on the NO3 Chemistry of the JRC profiles. Repacked soil columns were used to simulate the 11.5-m profiles, and the soil solution anion and cation concentrations were monitored at 10 points throughout the soil column. As the rainwater was applied, NO3 leached down the profile, with substantial quantities exiting the columns. Anion exchange was discounted as the major mechanism of NO3 release due to the substantial net loss of anions from the system (up to 2740 kg NO3-N/ha over the experimental period). As the soils were dominated by variable charge minerals, the effect of changing pH and ionic strength on the surface charge density was investigated in relation to the release of NO3 from the exchange. It was concluded that the equilibration of the soil solution with the low ionic strength rainwater solution resulted in a lessening of both the positive and negative surface charge. Nitrate was released into the soil solution and subsequently leached due to the lessening of the positive surface charge. Loss of NO3 from the soil profile was slow, with equivalent field release times estimated to be tens of years. Although annual release rates were high in absolute terms (up to 175 kg NO3-N/ha.year), they are only slightly greater than the current loss rates from fertilised sugarcane production (up to 50 kg NO3-N/ha.year). In addition to this, the large-scale release of NO3 from the accumulations will only occur until a new equilibrium is established with the input rainwater solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The leaching of N fertilisers has led to the formation of nitrate (NO3) accumulations in deep subsoils (>5 m depth) of the Johnstone River catchment. This paper outlines the chemical mechanism by which these NO3 accumulations are formed and maintained. This was achieved via a series of column experiments designed to investigate NO3 leaching in relation to the soil charge chemistry and the competition of anions for exchange sites. The presence of variable charge minerals has led to the formation positive surface charge within these profiles. An increase in the soil solution ionic strength accompanying the fertiliser leaching front acts to increase the positive (and negative) charge density, thus providing adsorption sites for NO3. A decrease in the soil solution ionic strength occurs after the fertiliser pulse moves past a point in the profile, due to dilution with incoming rainwater. Nitrate is then released from the exchange back into the soil solution, thus buffering the decrease in the soil solution ionic strength. Since NO3 was adsorbed throughout the profile in this experiment it does not effectively explain the situation occurring in the field. Previous observations of the sulfate (SO4) profile distribution indicated that large SO4 accumulations in the upper profile may influence the NO3 distribution through competition for adsorption sites. A subsequent experiment investigating the effect of SO4 additions on NO3 leaching showed that NO3 adsorption was minimal in the upper profile. Adsorption of NO3 did occur, though only in the region of the profile where SO4 occupancy was low, i.e. in the lower profile. Therefore, the formation of the NO3 accumulations is dependent on the variable charge mineralogy, the variation of charge density with soil solution ionic strength, and the effects of SO4 competition for adsorption sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High salt levels in mine spoils have been identified as one of the major chemical limitations to plant establishment after coal mining in central Queensland. Soil solution extracts from spoils indicated that EC levels of up to 26 dS/m could be encountered. Glasshouse trials examined the emergence and growth of Eucalyptus citriodora, Eucalyptus camaldulensis and Eucalyptus populnea provenances and Acacia salicina subjected to such EC levels. Relatively low levels of salt (100 mM NaCl, or 11 dS/m) with respect to the levels encountered on mine spoils, were enough to substantially reduce the rate and percentage emergence of all eucalypt provenances. A. salicina was found to be superior to the eucalypts in its ability to emerge and survive under saline conditions. It was the only species to have seedlings emerge and survive at 200 mM NaCl (20 dS/m), and the effect of salt on decreasing seedling dry weight was less pronounced for A. salicina than for any of the eucalypts. Established plants survived the range of salt treatments far better than emerging seedlings, with survival of established plants being reduced only at 300 and 400 mM NaCl (28 and 36 dS/m, respectively). A. salicina performed significantly better at 300 and 400 mM NaCl than most of the eucalypts studied. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The measurement of exchangeable cations in saline soils is limited by the difficulty in accurately separating soluble cations from exchangeable cations. A method is examined for saline soils in which exchangeable cations are calculated as the total extractable cations minus the concentration of soil solution (soluble) cations. In addition, a further two standard methods were investigated, one which assumes the total soil extractable cations are exchangeable, the other utilises a pretreatment to remove soluble salts prior to measurement of the remaining (exchangeable) cations. After equilibration with a range of sodium adsorption ratio (SAR) solutions at various ionic strengths, the exchangeable cation concentrations of two soils (Dermosol and Vertosol) were determined by these methods and compared to known values. The assumption that exchangeable cations can be estimated as the total soil extractable cations, although valid at low ionic strength, resulted in an overestimation of exchangeable Na and Ca concentrations at higher ionic strengths due to the presence of soluble salts. Pretreatment with ethanol and glycerol was found to effectively remove soluble salts thus allowing the accurate measurement of the effective cation exchange capacity (ECEC), however, dilution associated with the pretreatment process decreased concentrations of exchangeable Ca while simultaneously increasing exchangeable Na. Using the proposed method, good correlations were found between known and measured concentrations of exchangeable Na (Dermosol: y=0.873x and Vertosol: y=0.960x) and Ca (Dermosol: y=0.906x, and Vertosol: y=1.05x). Therefore, for soils with an ionic strength of approximately 50 mM (ECse 4 dS m-1) or greater (in which exchangeable cation concentrations are overestimated by assuming the total soil cations are exchangeable), concentrations can be calculated as difference between total extractable cations and soluble cations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salinity acts to inhibit plant access to soil water by increasing the osmotic strength of the soil solution. As the soil dries, the soil solution becomes increasingly concentrated, further limiting plant access to soil water. An experiment was conducted to examine the effect of salt on plant available water in a heavy clay soil, using a relatively salt tolerant species, wheat ‘Kennedy’, and a more salt sensitive species, chickpea ‘Jimbour’. Sodium chloride was applied to Red Ferrosol at 10 rates from 0 to 3 g/kg. Plants were initially maintained at field capacity. After 3 weeks, plants had become established and watering was ceased. The plants then grew using the water stored in the soil. Once permanent wilting point was reached plants were harvested, and soil water content was measured. The results showed that without salt stress, wheat and chickpea extracted approximately the same amount of water. However, as the salt concentration increased, the ability of chickpea to extract water was severely impaired, while wheat’s ability to extract water was not affected over the range of concentrations examined. Growth of both wheat and chickpea was reduced even from low salt concentrations. Possible explanations for this are that the effect on growth is due to Cl- toxicity and that this occurs at lower concentrations than the osmotic effect of salinity, or that the metabolic demands of maintaining plant water balance and extracting soil water under saline conditions result in reduced growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applications of the axisymmetric Boussinesq equation to groundwater hydrology and reservoir engineering have long been recognised. An archetypal example is invasion by drilling fluid into a permeable bed where there is initially no such fluid present, a circumstance of some importance in the oil industry. It is well known that the governing Boussinesq model can be reduced to a nonlinear ordinary differential equation using a similarity variable, a transformation that is valid for a certain time-dependent flux at the origin. Here, a new analytical approximation is obtained for this case. The new solution,, which has a simple form, is demonstrated to be highly accurate. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Australia, metal-contaminated sites, including those with elevated levels of copper (Cu), are frequently revegetated with endemic plants. Little is known about the responses of Australian plants to excess Cu. Acacia holosericea, Eucalyptus crebra, Eucalyptus camaldulensis, and Melaleuca leucadendra were grown in solution culture with six Cu treatments (0.1 to 40 mu M). While A. holosericea was the most tolerant to excess Cu, all of the species tested were sensitive to excess Cu when compared with exotic tree and agricultural species. The critical external concentrations for toxicity were < 0.7 mu M for all species tested. There was little differentiation between shoot-tissue Cu concentrations in normal versus treated plants, thus, the derivation of critical shoot concentrations was possible only for the most tolerant species, A. holosericea. Critical root Cu concentrations were approximately 210 mu g g(-1) (A. holosericea), 150 mu g g(-1) (E. crebra), 25 mu g g(-1) (E. camaldulensis), and 165 mu g g(-1) (M. leucadendra). These results provide the first comprehensive combination of growth responses, critical concentrations, and toxicity symptoms for three important Australian genera for use in the management of Cu-contaminated sites.