7 resultados para sodium dodecyl sulfate

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous Ni(OH)(2) is synthesized using sodium dodecyl sulfate as a template and urea as a hydrolysis-controlling agent. Mesoporous NiO with a centralized pore-size distribution is obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2) g(-1) for NiO calcined at 250 degreesC. Structure characterizations indicate a good mesoporous structure for the nickel oxide samples. Cyclic voltammetry shows the NiO to have good capacitive behaviour due to its unique mesoporous structure when using a large amount of NiO to fabricate the electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, mesoporous NiO with a controlled pore structure can be used in much larger amounts to fabricate electrodes and still maintain a high specific capacitance and good capacitive behaviour. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, nanoporous nickel oxide was synthesized using anionic surfactant assembly method. Structure characterizations show that this nickel oxide possesses partly-ordered mesoporous structure with nanocrystalline pore wall. The formation mechanism of wormlike nanoporous structure is ascribed to the quasi-reverse micelle system formed by ternary phases of SDS (sodium dodecyl sulfate)/urea/water. Cyclic voltammetry shows that these nickel oxide samples possess both good capacitive behavior due to its unique nanoporous structure and very high specific capacitance due to its high surface area with electrochemical activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Labeled surfactants have impurities in the form of un-reacted molecules or distributed products which is a constraint in evaluating its performance. This short review deals with the purity issue of surfactants and is divided into two parts. The first part deals with the methods of purification employed for obtaining a surface chemically pure surfactant for evaluation. In the second part the use of surface chemically impure surfactant in application areas of formulations is presented to highlight the impending impact on reproducibility of results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a highly pure, self-adjuvanting, triepitopic Group A Streptococcal vaccine based on the lipid core peptide system, a vaccine delivery system incorporating lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity. Vaccine synthesis was performed using native chemical ligation. Due to the attachment of a highly lipophilic adjuvant, addition of 1% (w/v) sodium dodecyl sulfate was necessary to enhance peptide solubility in order to enable ligation. The vaccine was synthesized in three steps to yield a highly pure product (97.7% purity) with an excellent overall yield. Subcutaneous immunization of B10. BR (H-2(k)) mice with the synthesized vaccine, with or without the addition of complete Freund's adjuvant, elicited high serum IgG antibody titers against each of the incorporated peptide epitopes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of non-carbohydrate surface components of granular starch in determining gelatinisation behaviour has been tested by treatment of native starches with a range of extractants. Resulting washed starches were analysed for (bio)chemical, calorimetric and theological properties. Sodium dodecyl sulphate (SDS) was the most efficient extractant tested, and resulted in major changes to the subsequent theological properties of wheat and maize starches but not other starches. Three classes of starch granule swelling behaviour are identified: (i) rapid swelling (e.g. waxy maize, potato), (ii) slow swelling that can be converted to rapid swelling by extraction of surface proteins and lipids (e.g. wheat, maize), and (iii) limited swelling not affected by protein/lipid extraction (e.g. high amylose maize/potato). Comparison of a range of extractants suggests that all of protein, lipid and amylose are involved in restriction of swelling for wheat or maize starches. Treatment of starches with SDS leads to a residue at comparable (low) levels of SDS for all starches. C-13 NMR analysis shows that this SDS is present as a glucan inclusion complex, even for waxy maize starch. We infer that under the conditions used, glucan inclusion complexation of SDS is equally likely with amylopectin as with amylose. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional vaccines consisting of whole attenuated microorganisms, killed microorganisms, or microbial components, administered with an adjuvant (e.g. alum), have been proved to be extremely successful. However, to develop new vaccines, or to improve upon current vaccines, new vaccine development techniques are required. Peptide vaccines offer the capacity to administer only the minimal microbial components necessary to elicit appropriate immune responses, minimizing the risk of vaccination associated adverse effects, and focusing the immune response toward important antigens. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with powerful, and potentially toxic adjuvants. The attachment of lipids to peptide antigens has been demonstrated as a potentially safe method for adjuvanting peptide epitopes. The lipid core peptide (LCP) system, which incorporates a lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity, has been demonstrated to boost immunogenicity of attached peptide epitopes without the need for additional adjuvants. The synthesis of LCP systems normally yields a product that cannot be purified to homogeneity. The current study describes the development of methods for the synthesis of highly pure LCP analogs using native chemical ligation. Because of the highly lipophilic nature of the LCP lipid adjuvant, difficulties (e.g. poor solubility) were experienced with the ligation reactions. The addition of organic solvents to the ligation buffer solubilized lipidic species, but did not result in successful ligation reactions. In comparison, the addition of approximately 1% (w/v) sodium dodecyl sulfate (SDS) proved successful, enabling the synthesis of two highly pure, tri-epitopic Streptococcus pyogenes LCP analogs. Subcutaneous immunization of B10.BR (H-2(k)) mice with one of these vaccines, without the addition of any adjuvant, elicited high levels of systemic IgG antibodies against each of the incorporated peptides. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.