36 resultados para respiratory quotient
em University of Queensland eSpace - Australia
Resumo:
Laryngeal papillomatosis is a benign disease of lhe larynx caused by human papilloma virus. The disease has u variable clinical course and treatment focuses on debridement until clinical remission. The most common technique for removing the papilloma is by carbon dioxide laser ublution. Powered microdebridement. which is more familiar to endoscopic sinus surgeons, has been adapted for use in the larynx. We would like to report on this technique for removal of respiratory papillomas that we believe to be safer for both patients and staff. The cases of seven paediatric patients with recurrent respiratory papillomatosis treated with microdebridement of their papillomas have been retrospectively reviewed.
Resumo:
Changes in blood-gas, acid-base, and plasma-ion status were investigated in the bimodally respiring turtle, Rheodytes leukops, during prolonged dives of up to 12 h. Given that R. leukops routinely submerges for several hours, the objective of this study was to determine whether voluntarily diving turtles remain aerobic and simultaneously avoid hypercapnic conditions over increasing dive lengths. Blood PO2, PCO2, and pH, as well as plasma concentrations of lactate, glucose, Na+, K+, Cl-, total Ca, and total Mg were determined in venous blood collected from the occipital sinus. Blood PO2 declined significantly with dive length; however, oxy-haemoglobin saturation remained greater than 30% for all R. leukops sampled. No changes were observed in blood PCO2, pH, [HCO3-], or plasma glucose, with increasing dive length. Despite repeated dives lasting more than 2 h, plasma lactate remained less than 3 mmol l(-1) for all R. leukops sampled, indicating the absence of anaerobiosis. Compensatory acid-base adjustments associated with anaerobiosis (e.g. declining [Cl-], increasing total [Ca] and [Mg]) were likewise absent, with plasma-ion concentrations remaining stable with increasing dive length. Results indicate that R. leukops utilises aquatic respiration to remain aerobic during prolonged dives, thus effectively avoiding the development of a metabolic and respiratory acidosis.
Resumo:
Cell culture and direct fluorescent antibody (DFA) assays have been traditionally used for the laboratory diagnosis of respiratory viral infections. Multiplex reverse transcriptase polymerase chain reaction (m-RT-PCR) is a sensitive, specific, and rapid method for detecting several DNIA and RNA viruses in a single specimen. We developed a m-RT-PCR assay that utilizes multiple virus-specific primer pairs in a single reaction mix combined with an enzyme-linked amplicon hybridization assay (ELAHA) using virus-specific probes targeting unique gene sequences for each virus. Using this m-RT-PCR-ELAHA, we examined the presence of seven respiratory viruses in 598 nasopharyngeal aspirate (NPA) samples from patients with suspected respiratory infection. The specificity of each assay was 100%. The sensitivity of the DFA was 79.7% and the combined DFA/culture amplified-DFA (CA-DFA) was 88.6% when compared to the m-RT-PCR-ELAHA. Of the 598 NPA specimens screened by m-RT-PCR-ELAHA, 3% were positive for adenovirus (ADM), 2% for influenza A (Flu A) virus, 0.3% for influenza B (Flu B) virus, 1% for parainfluenza type I virus (PIV1), 1% for parainfluenza type 2 virus (PIV2), 5.5% for parainfluenza type 3 virus (PIV3), and 21% for respiratory syncytial virus (RSV). The enhanced sensitivity, specificity, rapid result turnaround time and reduced expense of the m-RT-PCR-ELAHA compared to DFA and CA-DFA, suggests that this assay would be a significant improvement over traditional assays for the detection of respiratory viruses in a clinical laboratory.
Resumo:
Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.
Resumo:
Since the role of respiratory viruses in lung exacerbations of patients with cystic fibrosis has been hampered by the difficulty of detecting viruses in viscous sputum specimens, a multiplex reverse transcriptase PCR (RT-PCR) assay combined with colorimetric amplicon detection was tested for the identification of seven common respiratory viruses in the sputa of cystic fibrosis patients. Of 52 sputa from 38 patients, 12 (23%) samples from 12 patients were positive for a respiratory virus (4 for influenza B, 3 for parainfluenza 1, 3 for influenza A and 2 for respiratory syncytial virus). These results suggest that the RT-PCR method carried out on sputum may provide a convenient means of investigating the role of virus infection in lung exacerbations of cystic fibrosis patients.
Resumo:
Neuromuscular respiratory failure is not considered to be a clinical feature of chronic inflammatory demyelinating polyneuropathy (CIDP). We present 4 patients with CIDP who required respiratory assistance and mechanical ventilation. Two patients needed emergent intubation and one patient lapsed in a stupor from hypercapnia. Respiratory failure in CIDP should be considered exceptional, but more formal studies in CIDP may be needed to assess its prevalence.
Resumo:
Study objectives: Currently, esophageal pressure monitoring is the "gold standard" measure for inspiratory efforts, hut its invasive nature necessitates a better tolerated and noninvasive method to be used on children. Pulse transit time (PTT) has demonstrated its potential as a noninvasive surrogate marker for inspiratory efforts. The principle velocity determinant of PTT is the change in stiffness of the arterial wall and is inversely correlated to BP. Moreover, PTT has been shown to identify changes in inspiratory effort via the BP fluctuations induced by negative pleural pressure swings. In this study, the capability of PTT to classify respiratory, events during sleep as either central or obstructive in nature was investigated. Setting and participants: PTT measure was used in adjunct to routine overnight polysomnographic studies performed on 33 children (26 boys and 7 girls; mean +/- SD age, 6.7 +/- 3.9 years). The accuracy of PTT measurements was then evaluated against scored corresponding respiratory events in the polysomnography recordings. Results: Three hundred thirty-four valid respiratory events occurred and were analyzed. One hundred twelve obstructive events (OEs) showed a decrease in mean PTT over a 10-sample window that had a probability of being correctly ranked below the baseline PTT during tidal breathing of 0.92 (p < 0.005); 222 central events (CEs) showed a decrease in the variance of PTT over a 10-sample window that had a probability of being ranked below the baseline PTT of 0.94 (p < 0.005). This indicates that, at a sensitivity of 0.90, OEs can be detected with a specificity of 0.82 and CEs can be detected with a specificity of 0.80. Conclusions: PTT is able to categorize CEs and OEs accordingly in the absence of motion artifacts, including hypopneas. Hence, PTT shows promise to differentiate respiratory, events accordingly and can be an important diagnostic tool in pediatric respiratory sleep studies.< 0.005); 222 central events (CEs) showed a decrease in the variance of PTT over a 10-sample window that had a probability of being ranked below the baseline PTT of 0.94 (p < 0.005). This indicates that, at a sensitivity of 0.90, OEs can be detected with a specificity of 0.82 and CEs can be detected with a specificity of 0.80. Conclusions: PTT is able to categorize CEs and OEs accordingly in the absence of motion artifacts, including hypopneas. Hence, PTT shows promise to differentiate respiratory, events accordingly and can be an important diagnostic tool in pediatric respiratory sleep studies.');"
Resumo:
Metallosphaera sedula is a thermoacidophilic Crenarchaeon which is capable of leaching metals from sulfidic ores. The authors have investigated the presence and expression of genes encoding respiratory complexes in this organism when grown heterotrophically or chemolithotrophically on either sulfur or pyrite. The presence of three gene clusters, encoding two terminal oxidase complexes, the quinol oxidase SoxABCD and the SoxM oxidase supercomplex, and a gene cluster encoding a high-potential cytochrome b and components of a bc(1) complex analogue (cbsBA-soxL2N gene cluster) was established. Expression studies showed that the soxM gene was expressed to high levels during heterotrophic growth of M. sedula on yeast extract, while the soxABCD mRNA was most abundant in cells grown on sulfur. Reduced-minus-oxidized difference spectra of cell membranes showed cytochrome-related peaks that correspond to published spectra of Sulfolobus-type terminal oxidase complexes. In pyrite-grown cells, expression levels of the two monitored oxidase gene clusters were reduced by a factor of 10-12 relative to maximal expression levels, although spectra of membranes clearly contained oxidase-associated haems, suggesting the presence of additional gene clusters encoding terminal oxidases in M. sedula. Pyrite- and sulfur-grown cells contained high levels of the cbsA transcript, which encodes a membrane-bound cytochrome b with a possible role in iron oxidation or chemolithotrophy. The cbsA gene is not co-transcribed with the soxL2N genes, and therefore does not appear to be an integral part of this bc(1) complex analogue. The data show for the first time the differential expression of the Sulfolobus-type terminal oxidase gene clusters in a Crenarchaeon in response to changing growth modes.
Resumo:
Viruses are the major cause of pediatric acute respiratory tract infection (ARTI) and yet many suspected cases of infection remain uncharacterized. We employed 17 PCR assays and retrospectively screened 315 specimens selected by season from a predominantly pediatric hospital-based population. Before the Brisbane respiratory virus research study commenced, one or more predominantly viral pathogens had been detected in 15.2% (n = 48) of all specimens. The Brisbane study made an additional 206 viral detections, resulting in the identification of a microbe in 67.0% of specimens. After our study, the majority of microbes detected were RNA viruses (89.9%). Overall, human rhinoviruses (HRVs) were the most frequently identified target (n=140) followed by human adenoviruses (HAdVs; n = 25), human metapneumovirus (HMPV; n=18), human bocavirus (HBoV; n = 15), human respiratory syncytial virus (HRSV; n = 12), human coronaviruses (HCoVs; n = 11), and human herpesvirus-6 (n = 11). HRVs were the sole microbe detected in 37.8% (n = 31) of patients with suspected lower respiratory tract infection (LRTI). Genotyping of the HRV VP4/VP2 region resulted in a proposed subdivision of HRV type A into sublineages A1 and A2. Most of the genotyped HAdV strains were found to be type C. This study describes the high microbial burden imposed by HRVs, HMPV, HRSV, HCoVs, and the newly identified virus, HBoV on a predominantly paediatric hospital population with suspected acute respiratory tract infections and proposes a new formulation of viral targets for future diagnostic research studies.