29 resultados para membrane protein

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Niemann Pick C1 protein localizes to late endosomes and plays a key role in the intracellular transport of cholesterol in mammalian cells. Cholesterol and other lipids accumulate in a lysosomal or late endosomal compartment in cells lacking normal NPC1 function. Other than accumulation of lipids, defects in lysosomal retroendocytosis, sorting of a multifunctional receptor and endosomal movement have also been detected in NPC1 mutant cells. Ncr1p is an ortholog of NPC1 in the budding yeast Saccharomyces cerevisiae. In this study, we show that Ncr1p is a vacuolar membrane protein that transits through the biosynthetic vacuolar protein sorting pathway, and that it can be solubilized by Triton X-100 at 4 degreesC. Using well-established assays, we demonstrate that the absence of Ncr1p had no effect on fluid phase and receptor- mediated endocytosis, biosynthetic delivery to the vacuole, retrograde transport from endosome to Golgi and ubiquitin- and nonubiquitin-dependent multivesicular body sorting. We conclude that Ncr1p does not have an essential role in known endocytic transport pathways in yeast.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While our understanding of lipid microdomains has advanced in recent years, many aspects of their formation and dynamics are still unclear. In particular, the molecular determinants that facilitate the partitioning of integral membrane proteins into lipid raft domains are yet to be clarified. This review focuses on a family of raft-associated integral membrane proteins, termed flotillins, which belongs to a larger class of integral membrane proteins that carry an evolutionarily conserved domain called the prohibitin homology (PHB) domain. A number of studies now suggest that eucaryotic proteins carrying this domain have affinity for lipid raft domains. The PHB domain is carried by a diverse array of proteins including stomatin, podocin, the archetypal PHB protein, prohibitin, lower eucaryotic proteins such as the Dictyostelium discoideum proteins vacuolin A and vacuolin B and the Caenorhabditis elegans proteins unc-1, unc-24 and mec-2. The presence of this domain in some procaryotic proteins suggests that the PHB domain may constitute a primordial lipid recognition motif. Recent work has provided new insights into the trafficking and targeting of flotillin and other PHB domain proteins. While the function of this large family of proteins remains unclear, studies of the C. elegans PHB proteins suggest possible links to a class of volatile anaesthetics raising the possibility that these lipophilic agents could influence lipid raft domains. This review will discuss recent insights into the cell biology of flotillins and the large family of evolutionarily conserved PHB domain proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human MxA protein belongs to the superfamily of dynamin-like large GTPases that are involved in intracellular membrane trafficking. MxA is induced by interferons-alpha/beta (IFN-alpha/beta) and is a key component of the antiviral response against RNA viruses. Here, we show that MxA localizes to membranes that are positive for specific markers of the smooth endoplasmic reticulum, such as Syntaxin17, but is excluded from other membrane compartments. Overexpression of MxA leads to a characteristic reorganization of the associated membranes. Interestingly, Hook3, mannose-6-phosphate receptor, and Lamp-1, which normally accumulate in cis-Golgi, endosomes, and lysosomes, respectively, also colocalized with MxA, indicating that these markers were redistributed to the MxA-positive compartment. Functional assays, however, did not show any effect of MxA on endocytosis or the secretory pathway. The present results demonstrate that MxA is an IFN-induced antiviral effector protein that resembles the constitutively expressed large GTPase family members in its capacity to localize to and reorganize intracellular membranes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, we propose a novel method to predict the solvent accessible surface areas of transmembrane residues. For both transmembrane alpha-helix and beta-barrel residues, the correlation coefficients between the predicted and observed accessible surface areas are around 0.65. On the basis of predicted accessible surface areas, residues exposed to the lipid environment or buried inside a protein can be identified by using certain cutoff thresholds. We have extensively examined our approach based on different definitions of accessible surface areas and a variety of sets of control parameters. Given that experimentally determining the structures of membrane proteins is very difficult and membrane proteins are actually abundant in nature, our approach is useful for theoretically modeling membrane protein tertiary structures, particularly for modeling the assembly of transmembrane domains. This approach can be used to annotate the membrane proteins in proteomes to provide extra structural and functional information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to investigate whether peptides from the extracellular loops of the tight junction protein occludin could be used as a new principle for tight junction modulation. Peptides of 4 to 47 amino acids in length and covering the two extracellular loops of the tight junction protein occludin were synthesized, and their effect on the tight junction permeability in Caco-2 cells was investigated using [C-14] mannitol as a paracellular marker. Lipopeptide derivatives of one of the active occludin peptides (OPs), synthesized by adding a lipoamino acid containing 14 carbon atoms (C-14-) to the N terminus of the peptide, were also investigated. Peptides corresponding to the N terminus of the first extracellular loop of occludin increased the permeability of the tight junctions without causing short-term toxicity. However, the peptides had an effect only when added to the basolateral side of the cells, which could be partly explained by degradation by apical peptidases and aggregate formation. By contrast, the lipopeptide C-14-OP90-103, which protects the peptide from degradation and aggregation, displayed a rapid apical effect. The L- and D-diastereomers of C-14-OP90-103 had distinctly different effects. The D-isomer, which releases intact OP90-103 from the lipoamino acid, displayed a rapid and transient increase in tight junction permeability. The L- isomer, which releases OP90-103 more rapidly, gave a more sustained increase in tight junction permeability. In conclusion, C-14-OP90-103 represents a prototype of a new class of tight junction modulators that act on the extracellular domains of tight junction proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The geographically constrained distribution of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) in southeast Asian populations suggests that both viral and host genetics may influence disease risk. Although susceptibility loci have been mapped within the human genome, the role of viral genetics in the focal distribution of NPC remains an enigma. Here we report a molecular phylogenetic analysis of an NPC-associated viral oncogene, LMP1, in a large panel of EBV isolates from southeast Asia and from Papua New Guinea, Africa, and Australia, regions of the world where NPC is and is not endemic, respectively. This analysis revealed that LMP1 sequences show a distinct geographic structure, indicating that the southeast Asian isolates have evolved as a lineage distinct from those of Papua New Guinea, African, and Australian isolates. Furthermore, a likelihood ratio test revealed that the C termini of the LMP1 sequences of the southeast Asian lineage are under significant positive selection pressure, particularly at some sites within the C-terminal activator regions. We also present evidence that although the N terminus and transmembrane region of LMP1 have undergone recombination, the C-terminal region of the gene has evolved without any history of recombination. Based on these observations, we speculate that selection pressure may be driving the LMP1 sequences in virus isolates from southeast Asia towards a more malignant phenotype, thereby influencing the endemic distribution of NPC in this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Survivors of Hodgkin's lymphoma (HL) frequently have many years to experience the long-term toxicities of combined modality therapies. Also, a significant proportion of HL patients will relapse or have refractory disease, and less than half of these patients will respond to current salvage strategies. 30–50% of HL cases are Epstein–Barr virus associated (EBV-positive HL). The virus is localized to the malignant cells and is clonal. EBV-positive HL is more frequent in childhood, in older adults (>45 years) and in mixed cellularity cases. The survival of EBV-positive HL in the elderly and the immunosuppressed is particularly poor. Despite improvements in our understanding of EBV-positive HL, the true contribution of EBV to the pathogenesis of HL remains unknown. Increased knowledge of the virus’ role in the basic biology of HL may generate novel therapeutic strategies for EBV-positive HL and the presence of EBV-latent antigens in the malignant HL cells may represent a target for cellular immunotherapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oligomeric lipid raft-associated integral protein stomatin normally localizes to the plasma membrane and the late endosomal compartment. Similar to the caveolins, it is targeted to lipid bodies (LBs) on overexpression. Endogenous stomatin also associates with LBs to a small extent. Green fluorescent protein-tagged stomatin (StomGFP) and the dominant-negative caveolin-3 mutant DGV(cav3)(HA) occupy distinct domains on LB surfaces but eventually intermix. Studies of StomGFP deletion mutants reveal that the region for membrane association but not oligomerization and raft association is essential for LB targeting. Blocking protein synthesis leads to the redistribution of StomGFP from LBs to LysoTracker-positive vesicles indicating a connection with the late endosomal/ lysosomal pathway. Live microscopy of StomGFP reveals multiple interactions between LBs and microtubule-associated vesicles possibly representing signaling events and/or the exchange of cargo. Proteomic analysis of isolated LBs identifies adipophilin and TIP47, various lipid-specific enzymes, cytoskeletal components, chaperones, Ras-related proteins, protein kinase D2, and other regulatory proteins. The association of the Rab proteins 1, 6, 7, 10, and 18 with LBs indicates various connections to other compartments. Our data suggest that LBs are not only involved in the storage of lipids but also participate actively in the cellular signaling network and the homeostasis of lipids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new method has been developed for prediction of transmembrane helices using support vector machines. Different coding schemes of protein sequences were explored, and their performances were assessed by crossvalidation tests. The best performance method can predict the transmembrane helices with sensitivity of 93.4% and precision of 92.0%. For each predicted transmembrane segment, a score is given to show the strength of transmembrane signal and the prediction reliability. In particular, this method can distinguish transmembrane proteins from soluble proteins with an accuracy of similar to99%. This method can be used to complement current transmembrane helix prediction methods and can be Used for consensus analysis of entire proteomes . The predictor is located at http://genet.imb.uq.edu.au/predictors/ SVMtm. (C) 2004 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The majority of GLUT4 is sequestered in unique intracellular vesicles in the absence of insulin. Upon insulin stimulation GLUT4 vesicles translocate to, and fuse with, the plasma membrane. To determine the effect of GLUT4 content on the distribution and subcellular trafficking of GLUT4 and other vesicle proteins, adipocytes of adipose-specific, GLUT4-deficient (aP2-GLUT4-/-) mice and adipose-specific, GLUT4-overexpressing (aP2GLUT4- Tg) mice were studied. GLUT4 amount was reduced by 80 - 95% in aP2-GLUT4-/- adipocytes and increased similar to10-fold in aP2-GLUT4-Tg adipocytes compared with controls. Insulin-responsive aminopeptidase ( IRAP) protein amount was decreased 35% in aP2-GLUT4-/- adipocytes and increased 45% in aP2-GLUT4-Tg adipocytes. VAMP2 protein was also decreased by 60% in aP2-GLUT4-/- adipocytes and increased 2-fold in aP2GLUT4- Tg adipocytes. IRAP and VAMP2 mRNA levels were unaffected in aP2-GLUT4-Tg, suggesting that overexpression of GLUT4 affects IRAP and VAMP2 protein stability. The amount and subcellular distribution of syntaxin4, SNAP23, Munc-18c, and GLUT1 were unchanged in either aP2-GLUT4-/- or aP2-GLUT4-Tg adipocytes, but transferrin receptor was partially redistributed to the plasma membrane in aP2-GLUT4-Tg adipocytes. Immunogold electron microscopy revealed that overexpression of GLUT4 in adipocytes increased the number of GLUT4 molecules per vesicle nearly 2-fold and the number of GLUT4 and IRAP-containing vesicles per cell 3-fold. In addition, the proportion of cellular GLUT4 and IRAP at the plasma membrane in unstimulated aP2-GLUT4-Tg adipocytes was increased 4- and 2-fold, respectively, suggesting that sequestration of GLUT4 and IRAP is saturable. Our results show that GLUT4 overexpression or deficiency affects the amount of other GLUT4-vesicle proteins including IRAP and VAMP2 and that GLUT4 sequestration is saturable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Individuals living in regions where malaria is endemic develop an acquired immunity to malaria which enables them to remain asymptomatic while still carrying parasites. Field studies indicate that cumulative exposure to a variety of diverse Plasmodium parasites is required for the transition from symptomatic to asymptomatic malaria. This study used a simulation model of the within-host dynamics of P. falciparum to investigate the development of acquired clinical immunity under different transmission conditions and levels of parasite diversity. Antibodies developed to P. falciparum erythrocyte membrane protein 1 (PfEMP1), a clonally variant molecule, were assumed to be a key human immunological response to P. falciparum infection, along with responses to clonally conserved but polymorphic antigens. The time to the development of clinical immunity was found to be proportional to parasite diversity and inversely proportional to transmission intensity. The effect of early termination of symptomatic infections by chemotherapy was investigated and found not to inhibit the host's ability to develop acquired immunity. However, the time required to achieve this state was approximately double that compared to when no treatment was administered. This study demonstrates that an immune response primarily targeted against PfEMP1 has the ability to reduce clinical symptoms of infections irrespective of whether treatment is administered, supporting its role in the development of acquired clinical immunity. The results also illustrate a novel use for simulation models of P. falciparum infections, investigation of the influence of intervention strategies on the development of naturally acquired clinical immunity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydia pneumoniae is an obligate intracellular respiratory pathogen that causes 10% of community-acquired pneumonia and has been associated with cardiovascular disease. Both whole-genome sequencing and specific gene typing suggest that there is relatively little genetic variation in human isolates of C. pneumoniae. To date, there has been little genomic analysis of strains from human cardiovascular sites. The genotypes of C. pneumoniae present in human atherosclerotic carotid plaque were analysed and several polymorphisms in the variable domain 4 (VD4) region of the outer-membrane protein-A (ompA) gene and the intergenic region between the ygeD and uridine kinase (ygeD-urk) genes were found. While one genotype was identified that was the same as one reported previously in humans (respiratory and cardiovascular), another genotype was found that was identical to a genotype from non-human sources (frog/koala).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mammalian retromer protein complex, which consists of three proteins - Vps26, Vps29, and Vps35 - in association with members of the sorting nexin family of proteins, has been implicated in the trafficking of receptors and their ligands within the endosomal/lysosomal system of mammalian cells. A bioinformatic analysis of the mouse genome identified an additional transcribed paralog of the Vps26 retromer protein, which we termed Vps26B. No paralogs were identified for Vps29 and Vps35. Phylogenetic studies indicate that the two paralogs of Vps26 become evident after the evolution of the chordates. We propose that the chordate Vps26-like gene published previously be renamed Vps26A to differentiate it from Vps26B. As for Vps26A, biochemical characterization of Vps26B established that this novel 336 amino acid residue protein is a peripheral membrane protein. Vps26B co-precipitated with Vps35 from transfected cells and the direct interaction between these two proteins was confirmed by yeast 2-hybrid analysis, thereby establishing Vps26B as a subunit of the retromer complex. Within HeLa cells, Vps26B was found in the cytoplasm with low levels at the plasma membrane, while Vps26A was predominantly associated with endosomal membranes. Within A549 cells, both Vps26A and Vps26B co-localized with actin-rich lamellipodia at the cell surface. These structures also co-localized with Vps35. Total internal reflection fluorescence microscopy confirmed the association of Vps26B with the plasma membrane in a stable HEK293 cell line expressing cyan fluorescent protein (CFP)-Vps26B. Based on these observations, we propose that the mammalian retromer complex is located at both endosomes and the plasma membrane in some cell types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We previously reported that bacterial products such as LPS and CpG DNA down-modulated cell surface levels of the Colony Stimulating Factor (CSF)-1 receptor (CSF-1R) on primary murine macrophages in an all-or-nothing manner. Here we show that the ability of bacterial products to down-modulate the CSF-IR rendered bone marrow-derived macrophages (BMM) unresponsive to CSF-1 as assessed by Akt and ERK 1/2 phosphorylation. Using toll-like receptor (th-)9 as a model CSF-1-repressed gene, we show that LPS induced tlr9 expression in BMM only when CSF-1 was present, suggesting that LPS relieves CSF-1-mediated inhibition to induce gene expression. Using cDNA microarrays, we identified a cluster of similarly CSF-1 repressed genes in BMM. By real time PCR we confirmed that the expression of a selection of these genes, including integral membrane protein 2B (itm2b), receptor activity-modifying protein 2 (ramp2) and macrophage-specific gene 1 (mpg-1), were repressed by CSF-1 and were induced by LPS only in the presence of CSF-1. This pattern of gene regulation was also apparent in thioglycollate-elicited peritoneal macrophages (TEPM). LPS also counteracted CSF-1 action to induce mRNA expression of a number of transcription factors including interferon consensus sequence binding protein 1 (Icsbp1), suggesting that this mechanism leads to transcriptional reprogramming in macrophages. Since the majority of in vitro studies on macrophage biology do not include CSF-1, these genes represent a set of previously uncharacterised LPS-inducible genes. This study identifies a new mechanism of macrophage activation, in which LPS (and other toll-like receptor agonists) regulate gene expression by switching off the CSF-1R signal. This finding also provides a biological relevance to the well-documented ability of macrophage activators to down-modulate surface expression of the CSF-1R. (C) 2005 Elsevier GmbH. All rights reserved.