2 resultados para environmental consistency

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The epidemiology of a disease describes numbers of people becoming incident, being prevalent, recovering, surviving, and dying from the disease or from other causes. As a matter of accounting principle, the inflow, stock, and outflows must be compatible, and if we could observe completely every person involved, the epidemiologic estimates describing the disease would be consistent. Lack of consistency is an indicator for possible measurement error. Methods: We examined the consistency of estimates of incidence, prevalence, and excess mortality of dementia from the Rotterdam Study. We used the incidence and excess mortality estimates to calculate with a mathematical disease model a predicted prevalence, and compared the predicted to the observed prevalence. Results: Predicted prevalence is in most age groups lower than observed, and the difference between them is significant for some age groups. Conclusions: The observed discrepancy could be due to overestimates of prevalence or excess mortality, or an underestimate of incidence, or a combination of all three. We conclude from an analysis of possible causes that it is not possible to say which contributes most to the discrepancy. Estimating dementia incidence in an aging cohort presents a dilemma: with a short follow-up border-line incident cases are easily missed, and with longer follow-up measurement problems increase due to the associated aging of the cohort. Checking for consistency is a useful strategy to signal possible measurement error, but some sources of error may be impossible to avoid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic protocols that use decision rules or scores arc, seen to improve consistency and transparency in classifying the conservation status of species. When applying these protocols, assessors are typically required to decide on estimates for attributes That are inherently uncertain, Input data and resulting classifications are usually treated as though they arc, exact and hence without operator error We investigated the impact of data interpretation on the consistency of protocols of extinction risk classifications and diagnosed causes of discrepancies when they occurred. We tested three widely used systematic classification protocols employed by the World Conservation Union, NatureServe, and the Florida Fish and Wildlife Conservation Commission. We provided 18 assessors with identical information for 13 different species to infer estimates for each of the required parameters for the three protocols. The threat classification of several of the species varied from low risk to high risk, depending on who did the assessment. This occurred across the three Protocols investigated. Assessors tended to agree on their placement of species in the highest (50-70%) and lowest risk categories (20-40%), but There was poor agreement on which species should be placed in the intermediate categories, Furthermore, the correspondence between The three classification methods was unpredictable, with large variation among assessors. These results highlight the importance of peer review and consensus among multiple assessors in species classifications and the need to be cautious with assessments carried out 4), a single assessor Greater consistency among assessors requires wide use of training manuals and formal methods for estimating parameters that allow uncertainties to be represented, carried through chains of calculations, and reported transparently.