12 resultados para Vitamin B Complex

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ingress of water into poly(2-hydroxyethyl methacrylate), PHEMA, loaded with either one of two model drugs, vitamin B-12 or aspirin, was studied at 37 degreesC using three-dimensional NMR imaging. PHEMA was loaded with 5 and 10 wt % of the drugs. From the imaging profiles, it was observed that incorporation of vitamin B-12 into PHEMA resulted in enhanced crack formation on sorption of water and the crack healing behind the diffusion front was slower than for PHEMA without added drug. This was accounted for by the anti-plasticization of PHEMA by vitamin B-12. Crack formation was inhibited in the P-HEMA-aspirin systems because of the plasticizing effect of the aspirin on the PHEMA matrix. All of the polymers were found to absorb water according to an underlying Fickian diffusion mechanism. For PHEMA loaded with 5 wt % of aspirin or vitamin B-12, the best values of the water diffusion coefficients were both found to be 1.3 +/- 0.1 x 10(-11) m(2) s(-1) at 37 degreesC, while the values for the polymer loaded with 10 wt % of the drugs were slightly higher, 1.5 +/- 0.1 x 10(-11) m(2) s(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the role of the hepatitis C virus internal ribosome entry site (HCV IRES) domain IV in translation initiation and regulation, two chimeric IRES elements were constructed to contain the reciprocal domain IV in the otherwise HCV and classical swine fever virus IRES elements. This permitted an examination of the role of domain IV in the control of HCV translation. A specific inhibitor of the HCV IRES, vitamin B-12 was shown to inhibit translation directed by all IRES elements which contained domain IV from the HCV and the GB virus B IRES elements, whereas the HCV core protein could only suppress translation from the wild-type HCV IRES. Thus, the mechanisms of translation inhibition by vitamin B-12 and the core protein differ, and they target different regions of the IRES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ingress of water and Kokubo simulated body fluid (SBF) into poly (2-hydroxyethyl methacrylate) (PHEMA), and its co-polymers with tetrahydrofurduryl methacrylate (THFMA), loaded with either one of two model drugs, vitamin 1312 or aspirin, was studied by mass uptake over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 wt% or 10 wt% of the drugs. From DSC studies it was observed that vitamin B-12 behaved as a physical cross-linker restricting chain segmental mobility, and so had a small anti-plasticisation effect on PHEMA and the co-polymers rich in HEMA, but almost no effect on the T-g of co-polymers rich in THFMA. On the other hand, aspirin exhibited a plasticising effect on PHEMA and the copolymers. All of the polymers were found to absorb water and SBF according to a Fickian diffusion mechanism. The polymers were all found to swell to a greater extent in SBF than in water, which was attributed to the presence of Tris buffer in the SBF. The sorptions of the two penetrants were found to follow Fickian kinetics in all cases and the diffusion coefficients at 310 K for SBF were found to be smaller than those for water, except for the polymers containing aspirin where the diffusion coefficients were higher than for the other systems. For example, for sorption into PHEMA the diffusion coefficient for water was 1.41 X 10(-11) m(2)/s and for SBF was 0.79 x 10-11 m(2)/s, but in the presence of 5 wt% aspirin the corresponding values were 1.27 x 10(-1)1 m(2)/s and 1.25 x 10(-11) m(2)/s, respectively. The corresponding values for PHEMA loaded with 5 wt% B-12 were 1.25 x 10(-11) m(2)/s and 0.74 x 10(-11) m(2)/s, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model drug release study on the ingress of water and Kokubo simulated body fluid (SBF) into poly(2-hydroxyethyl methacrylate) (THFMA) and its copolymers with tetrahydrofurfuryl methacrylate (THFMA) loaded with vitamin B-12 was undertaken over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 or 10 wt-% of the drug. The drug release from the polymers was found to follow a Fickian diffusion mechanism in the early stages of the drug release, with higher normalized release rates at higher temperatures and higher drug loadings. The normalized release rates were also found to be higher for the SBF solution than for water. The copolymer composition was found to have a significant effect on the rate of release of the drug, with the rate falling rapidly between HEMA mole fractions of 1.0 and 0.8, but for lower mole fractions of HEMA the normalized release rate decreased more slowly. This behaviour followed the trend found for the changes in the equilibrium penetrant contents for the copolymers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ingress of water into copolymers of 2-hydroxyethyl methacrylate (HEMA) and tetrahydrofurfuryl methacrylate (THFMA) loaded with either one of two model drugs, ie vitamin B-12 or aspirin, was studied at 310 K using three-dimensional nuclear magnetic resonance (3D NMR) imaging. The poly(HEMA) was loaded with 5 wt% of the drugs. From the imaging profiles it was observed that incorporation of vitamin B-12 into the polymers rich in HEMA resulted in crack formation at the interface between the rubbery region and the glassy core on sorption of water, although these cracks were 'healed' behind the diffusion front. However, for the copolymers with low HEMA contents and for those containing aspirin, no evidence for similar crack formation was found. For the copolymers loaded with 5 wt% of aspirin or vitamin B-12 the values of the water diffusion coefficients, determined by curve-fitting the relative water concentration profiles from magnetic resonance imaging (MRI) measurements, were found to be smaller than those obtained from a mass uptake study. (C) 2004 Society of Chemical Industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Purpose - A higher plasma concentration of total homocysteine (tHcy) is associated with a greater risk of cardiovascular events. Previous studies, largely in younger individuals, have shown that B vitamins lowered tHcy by substantial amounts and that this effect is greater in people with higher tHcy and lower folate levels. Methods - We undertook a 2-year, double-blind, placebo-controlled, randomized trial in 299 men aged >= 75 years, comparing treatment with a daily tablet containing 2 mg of folate, 25 mg of B-6, and 400 mu g of B-12 or placebo. The study groups were balanced regarding age (mean +/- SD, 78.9 +/- 2.8 years), B vitamins, and tHcy at baseline. Results - Among the 13% with B12 deficiency, the difference in mean changes in treatment and control groups for tHcy was 6.74 mu mol/L (95% CI, 3.94 to 9.55 mu mol/L) compared with 2.88 mu mol/L (95% CI, 0.07 to 5.69 mu mol/L) for all others. Among the 20% with hyperhomocysteinaemia, the difference between mean changes in treatment and control groups for men with high plasma tHcy compared with the rest of the group was 2.8 mu mol/L (95% CI, 0.6 to 4.9 mu mol/L). Baseline vitamin B12, serum folate, and tHcy were significantly associated with changes in plasma tHcy at follow-up (r = 0.252, r = 0.522, and r = -0.903, respectively; P = 0.003, <0.001, and <0.001, respectively) in the vitamin group. Conclusions - The tHcy-lowering effect of B vitamins was maximal in those who had low B12 or high tHcy levels. Community-dwelling older men, who are likely to be deficient in B12 or have hyperhomocysteinemia, may be most likely to benefit from treatment with B vitamins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Elevated homocysteine (hyperhomocysteinaemia) in renal patients is a major concern for physicians. Although cause and effect between homocysteine and cardiovascular disease (CVD) has not been established in either the general population or renal patients, there is much evidence that this relationship does exist. Purported mechanisms that may explain this effect include increases in endothelial injury, smooth muscle cell proliferation, low-density lipoprotein oxidation and changes in haemostatic balance. Renal patients have a much greater incidence of hyperhomocysteinaemia and this may be explained by decreases in either the renal or extrarenal metabolism of the compound. We conclude that data from long-term placebo-controlled trials are urgently required to determine whether hyperhomocysteinaemia in renal patients is a cause of CVD events and requires therapeutic targeting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hyperhomocysteinemia is a potential risk factor for vascular disease and is associated with endothelial dysfunction, a predictor of adverse cardiovascular events. Renal patients (end-stage renal failure (ESRF) and transplant recipients (RTR)) exhibit both hyperhomocysteinemia and endothelial dysfunction with increasing evidence of a causative link between the 2 conditions. The elevated homocysteine appears to be due to altered metabolism in the kidney (intrarenal) and in the uremic circulation ( extrarenal). This review will discuss 18 supplementation studies conducted in ESRF and 6 in RTR investigating the effects of nutritional therapy to lower homocysteine. The clinical significance of lowering homocysteine in renal patients will be discussed with data on the effects of B vitamin supplementation on cardiovascular outcomes such as endothelial function presented. Folic acid is the most effective nutritional therapy to lower homocysteine. In ESRF patients, supplementation with folic acid over a wide dose range ( 2 - 20 mg/day) either individually or in combination with other B vitamins will decrease but not normalize homocysteine. In contrast, in RTR similar doses of folic acid normalizes homocysteine. Folic acid improves endothelial function in ESRF patients, however this has yet to be investigated in RTR. Homocysteine-lowering therapy is more effective in ESRF patients than RTR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thiamin (vitamin B1) is required in animal diets because it is the precursor of the enzyme cofactor, thiamin diphosphate. Unlike other B vitamins, the dietary thiamin requirement is proportional to non-fat energy intake but there is no obvious biochemical reason for this relationship. In the present communication we show for two enzymes that the cofactor undergoes a slow destruction during catalysis, which may explain the interdependence of thiamin and energy intakes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Cyclosporin A (CsA)-treated renal transplant recipients (RTR) exhibit relative hyperhomocystinemia and vascular dysfunction. Folate supplementation lowers homocysteine and has been shown to improve vascular function in healthy subjects and patients with coronary artery disease. The aim of this study was to assess the effects of 3 months of folate supplementation (5 mg/day) on vascular function and structure in RTR. Methods: A double-blind, placebo-controlled crossover study was conducted in 10 CsA-treated RTR. Vascular structure was measured as carotid artery intima media thickness (IMT) and function was assessed as changes in brachial artery diameter during reactive hyperemia (RE) and in response to glyceryl trinitrate (GTN). Function data were analyzed as absolute and percent change from baseline and area under the diameter/time curve. Blood samples were collected before and after supplementation and analyzed for total plasma homocysteine, folate, vitamin B-12 and asymmetric dimethyl arginine (ADMA) in addition to regular measures of hemoglobin, hematocrit, mean corpuscular volume (MCV) and serum creatinine. Results: Folate supplementation significantly increased plasma folate by 687% (p < 0.005) and decreased homocysteine by 37% (p < 0.05) with no changes (p > 0.05) in vitamin B 12 or ADMA. There were no significant (p > 0.05) changes in vascular structure or function during the placebo or the folate supplementation phases; IMT; placebo pre mean +/- SD, 0.52 +/- 0.12, post 0.50 +/- 0.11; folate pre 0.55 +/- 0.17, post 0.49 +/- 10.20 mm 5% change in brachial artery diameter (RH, placebo pre 10 +/- 8, post 6 +/- 5; folate pre 9 +/- 7, post 7 +/- 5; GTN, placebo pre 18 +/- 10, post 17 +/- 9, folate pre 16 +/- 9, post-supplementation 18 +/- 8). Conclusion: Three months of folate supplementation decreases plasma homocysteine but has no effect on endothelial function or carotid artery IMT in RTR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. The growth hormone (GH) receptor was the first of the class 1 cytokine receptors to be cloned. It shares a number of structural characteristics with other family members and common signalling mechanisms based on common usage of the Janus kinase 2 (JAK2). 2. Growth hormone receptor activation is initiated by GH-induced homodimerization of receptor molecules. This has enabled the creation of specific hormone antagonists that block receptor dimerization. 3. The details of the transcription factors used by the activated receptor are being revealed as a result of promoter analyses and electrophoretic mobility gelshift analysis. 4. Growth hormone receptors are widespread and their discovery in certain tissues has led to the assignment of new physiological roles for GH, Some of these involve local or paracrine roles for GH, as befits its cytokine status. 5. Four examples of such novel roles are discussed, These are: (i) the brain GH axis; (ii) GH and the vitamin B-12 axis; (iii) GH in early pre-implantation development; and (iv) GH in development of the tooth. 6. We propose that the view that GH acts through the intermediacy of insulin-like growth factor-1 is simplistic; rather, GH acts to induce an array of growth factors and their receptors and the composition of this array varies with tissue type and, probably, stage of development.