9 resultados para Síndrome de Guillain-Barré

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV)-infected B cell lymphomas are resistant to apoptosis during cancer development and treatment with therapies. The molecular controls that determine why EBV infection causes apoptosis resistance need further definition. EBV-positive and EBV-negative BJA-B B cell lymphoma cell lines were used to compare the expression of selected apoptosis-regulating Bcl-2 and caspase proteins in EBV-related apoptosis resistance, after 8 hr or 18-24 hr etoposide treatment (80 muM). Apoptosis was quantified using morphology and verified with Hoechst 33258 nuclear stain and electron microscopy. Fluorescence activated cell sorting (FACS) was used to analyse effects on cell cycle of the EBV infection as well as etoposide treatment. Anti-apoptotic Bcl-2 and Bcl-XL, pro-apoptotic Bax, caspase-3 and caspase-9 expression and activation were analysed using Western immunoblots and densitometry. EBV-positive cultures had significantly lower levels of apoptosis in untreated and etoposide-treated cultures in comparison with EBV-negative cultures (p < 0.05). FACS analysis indicated a strong G2/M block in both cell sublines after etoposide treatment. Endogenous Bcl-2 was minimal in the EBV-negative cells in comparison with strong expression in EBV-positive cells. These levels did not alter with etoposide treatment. Bcl-XL was expressed endogenously in both cell lines and had reduced expression in EBV-negative cells after etoposide treatment. Bax showed no etoposide-induced alterations in expression. Pro-caspase-9 and -3 were seen in both EBV-positive and -negative cells. Etoposide induced cleavage of caspase-9 in both cell lines, with the EBV-positive cells having proportionally less cleavage product, in agreement with their lower levels of apoptosis. Caspase-3 cleavage occurred in the EBV-negative etoposide-treated cells but not in the EBV-positive cells. The results indicate that apoptosis resistance in EBV-infected B cell lymphomas is promoted by an inactive caspase-3 pathway and elevated expression of Bcl-2 that is not altered by etoposide drug treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus nuclear antigen (EBNA)-6 is essential for EBV-induced immortalization of primary human B-lymphocytes in vitro. Previous studies have shown that EBNA-6 acts as a transcriptional regulator of viral and cellular genes; however at present, few functional domains of the 140 kDa EBNA-6 protein have been completely characterized. There are five computer-predicted nuclear localization signals (NLS), four monopartite and one bipartite, present in the EBNA-6 amino acid sequence. To identify which of these NLS are functional, fusion proteins between green fluorescent protein and deletion constructs of EBNA-6 were expressed in HeLa cells, Each of the constructs containing at least one of the NLS was targeted to the nucleus of cells whereas a construct lacking all of the NLS was cytoplasmic. Site-directed mutation of these NLS demonstrated that only three of the NLS were functional, one at the N-terminal end (aa 72-80), one in the middle (aa 412-418) and one at the C-terminal end (aa 939-945) of the EBNA-6 protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geographically constrained distribution of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) in southeast Asian populations suggests that both viral and host genetics may influence disease risk. Although susceptibility loci have been mapped within the human genome, the role of viral genetics in the focal distribution of NPC remains an enigma. Here we report a molecular phylogenetic analysis of an NPC-associated viral oncogene, LMP1, in a large panel of EBV isolates from southeast Asia and from Papua New Guinea, Africa, and Australia, regions of the world where NPC is and is not endemic, respectively. This analysis revealed that LMP1 sequences show a distinct geographic structure, indicating that the southeast Asian isolates have evolved as a lineage distinct from those of Papua New Guinea, African, and Australian isolates. Furthermore, a likelihood ratio test revealed that the C termini of the LMP1 sequences of the southeast Asian lineage are under significant positive selection pressure, particularly at some sites within the C-terminal activator regions. We also present evidence that although the N terminus and transmembrane region of LMP1 have undergone recombination, the C-terminal region of the gene has evolved without any history of recombination. Based on these observations, we speculate that selection pressure may be driving the LMP1 sequences in virus isolates from southeast Asia towards a more malignant phenotype, thereby influencing the endemic distribution of NPC in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV)-encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type-dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I-restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8(+) T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8(+) T cell epitopes front EBNA1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survivors of Hodgkin's lymphoma (HL) frequently have many years to experience the long-term toxicities of combined modality therapies. Also, a significant proportion of HL patients will relapse or have refractory disease, and less than half of these patients will respond to current salvage strategies. 30–50% of HL cases are Epstein–Barr virus associated (EBV-positive HL). The virus is localized to the malignant cells and is clonal. EBV-positive HL is more frequent in childhood, in older adults (>45 years) and in mixed cellularity cases. The survival of EBV-positive HL in the elderly and the immunosuppressed is particularly poor. Despite improvements in our understanding of EBV-positive HL, the true contribution of EBV to the pathogenesis of HL remains unknown. Increased knowledge of the virus’ role in the basic biology of HL may generate novel therapeutic strategies for EBV-positive HL and the presence of EBV-latent antigens in the malignant HL cells may represent a target for cellular immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HLA associations are found to differ with the gender of the patient in some autoimmune diseases. Here we have investigated whether there are gender-related HLA associations in Guillain-Barre syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), both of which occur more frequently in male patients than in females. In GBS, no particular HLA associations were noted, except for a slight negative association in both males and females for carriage of HLA-DR5. In CIDP, the gene frequency and the frequency of individuals positive for HLA-DR2 were greater in female patients than female controls, although this was statistically significant only for the gene frequency. Furthermore more female CIDP patients were homozygous for DR2, than male CIDP patients, or male or female controls and patients with GBS. This suggests that sex-related factors may interact with the risk associated with carriage of HLA-DR2 for development of CIDP. (c) 2006 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Latent Epstein-Barr virus (EBV) genomes are found in the malignant cells of approximately one-third of Hodgkin's lymphoma (HL) cases. Detection and quantitation of EBV viral DNA could potentially be used as a biomarker of disease activity. Experimental Design: Initially, EBV-DNA viral load was prospectively monitored from peripheral blood mononuclear cells (PBMC) in patients with HL. Subsequently, we analyzed viral load in plasma from a second cohort of patients. A total of 58 patients with HL (31 newly diagnosed, 6 relapsed, and 21 in long-term remission) were tested. Using real-time PCR, 43 PBMC and 52 plasma samples were analyzed. Results: EBV-DNA was detectable in the plasma of all EBV-positive patients with HL prior to therapy. However, viral DNA was undetectable following therapy in responding patients (P = 0.0156), EBV-positive HL patients in long-term remission (P = 0.0011), and in all patients with EBV-negative HL (P = 0.0238). Conversely, there was no association seen for the EBV-DNA load measured from PBMC in patients with active EBV-positive HL patients as compared with EBV-negative HL, or patients in long-term remission. EBV-DNA load in matched plasma/PBMC samples were not correlated. Conclusions: We show that free plasma EBV-DNA has excellent sensitivity and specificity, and can be used as a noninvasive biomarker for EBV-positive HL and that serial monitoring could predict response to therapy. Additional prospective studies are required to further evaluate the use of free plasma EBV-DNA as a biomarker for monitoring response to treatment in patients with EBV-positive HL.