32 resultados para Membrane Proteins

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of a computational membrane organization prediction pipeline, MemO, identified putative type II membrane proteins as proteins predicted to encode a single alpha-helical transmembrane domain (TMD) and no signal peptides. MemO was applied to RIKEN's mouse isoform protein set to identify 1436 non-overlapping genomic regions or transcriptional units (TUs), which encode exclusively type II membrane proteins. Proteins with overlapping predicted InterPro and TMDs were reviewed to discard false positive predictions resulting in a dataset comprised of 1831 transcripts in 1408 TUs. This dataset was used to develop a systematic protocol to document subcellular localization of type II membrane proteins. This approach combines mining of published literature to identify subcellular localization data and a high-throughput, polymerase chain reaction (PCR)-based approach to experimentally characterize subcellular localization. These approaches have provided localization data for 244 and 169 proteins. Type II membrane proteins are localized to all major organelle compartments; however, some biases were observed towards the early secretory pathway and punctate structures. Collectively, this study reports the subcellular localization of 26% of the defined dataset. All reported localization data are presented in the LOCATE database (http://www.locate.imb.uq.edu.au).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma membrane compartmentalization imposes lateral segregation on membrane proteins that is important for regulating signal transduction. We use computational modeling of immunogold spatial point patterns on intact plasma membrane sheets to test different models of inner plasma membrane organization. We find compartmentalization at the nanoscale level but show that a classical raft model of preexisting stable domains into which lipid raft proteins partition is incompatible with the spatial point patterns generated by the immunogold labeling of a palmitoylated raft marker protein. Rather, approximate to 30% of the raft protein exists in cholesterol-dependent nanoclusters, with approximate to 70% distributed as monomers. The cluster/monomer ratio (number of proteins in clusters/number of proteins outside clusters) is independent of expression level. H-rasG12V and K-rasG12V proteins also operate in nanoclusters with fixed cluster/monomer ratios that are independent of expression level. Detailed calibration of the immunogold imaging protocol suggests that radii of raft and RasG12V protein nanoclusters may be as small as 11 and 6 nm, respectively, and shows that the nanoclusters contain small numbers (6.0-7.7) of proteins. Raft nanoclusters do not form if the actin cytoskeleton is disassembled. The formation of K-rasG12V but not H-rasG12V nanoclusters also is actin-dependent. K-rasG12V but not H-rasG12V signaling is abrogated by actin cytoskeleton disassembly, which shows that nanoclustering is critical for Ras function. These findings argue against stable preexisting domains on the inner plasma membrane in favor of dynamic actively regulated nanoclusters similar to those proposed for the outer plasma membrane. RasG12V nanoclusters may facilitate the assembly of essential signal transduction complexes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The intestinal spirochaete Brachyspira pilosicoli causes colitis in a wide variety of host species. Little is known about the structure or protein constituents of the B. pilosicoli outer membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated from B. pilosicoli strain 95-1000 cells by osmotic lysis in dH(2)O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV; p = 1.18 g CM-3) and a low-density fraction (LDMV; rho=1.12 g cm(-3)). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDa B. pilosicoli OM protein) and was used as a source of antigens to produce mAbs. Five B. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to the B. pilosicoli OM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening a B. pilosicoli 95-1000 genome library with the mAb and was expressed in Escherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction of E. coli strain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains of B. pilosicoli isolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution within B. pilosicoli.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Structural similarity among proteins is reflected in the distribution of hydropathicity along the amino acids in the protein sequence. Similarities in the hydropathy distributions are obvious for homologous proteins within a protein family. They also were observed for proteins with related structures, even when sequence similarities were undetectable. Here we present a novel method that employs the hydropathy distribution in proteins for identification of (sub)families in a set of (homologous) proteins. We represent proteins as points in a generalized hydropathy space, represented by vectors of specifically defined features. The features are derived from hydropathy of the individual amino acids. Projection of this space onto principal axes reveals groups of proteins with related hydropathy distributions. The groups identified correspond well to families of structurally and functionally related proteins. We found that this method accurately identifies protein families in a set of proteins, or subfamilies in a set of homologous proteins. Our results show that protein families can be identified by the analysis of hydropathy distribution, without the need for sequence alignment. (C) 2005 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is an urgent need for high purity, single chain, fully functional Eph/ephrin membrane proteins. This report outlines the pTIg-BOS-Fc vector and purification approach resulting in rapid increased production of fully functional single chain extracellular proteins that were isolated with high purity and used in structure-function analysis and pre-clinical studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Membrane organization describes the orientation of a protein with respect to the membrane and can be determined by the presence, or absence, and organization within the protein sequence of two features: endoplasmic reticulum signal peptides and alpha-helical transmembrane domains. These features allow protein sequences to be classified into one of five membrane organization categories: soluble intracellular proteins, soluble secreted proteins, type I membrane proteins, type II membrane proteins, and multi- spanning membrane proteins. Generation of protein isoforms with variable membrane organizations can change a protein's subcellular localization or association with the membrane. Application of MemO, a membrane organization annotation pipeline, to the FANTOM3 Isoform Protein Sequence mouse protein set revealed that within the 8,032 transcriptional units ( TUs) with multiple protein isoforms, 573 had variation in their use of signal peptides, 1,527 had variation in their use of transmembrane domains, and 615 generated protein isoforms from distinct membrane organization classes. The mechanisms underlying these transcript variations were analyzed. While TUs were identified encoding all pairwise combinations of membrane organization categories, the most common was conversion of membrane proteins to soluble proteins. Observed within our highconfidence set were 156 TUs predicted to generate both extracellular soluble and membrane proteins, and 217 TUs generating both intracellular soluble and membrane proteins. The differential use of endoplasmic reticulum signal peptides and transmembrane domains is a common occurrence within the variable protein output of TUs. The generation of protein isoforms that are targeted to multiple subcellular locations represents a major functional consequence of transcript variation within the mouse transcriptome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study describes the identification of outer membrane proteins (OMPs) of the bacterial pathogen Pasteurella multocida and an analysis of how the expression of these proteins changes during infection of the natural host. We analysed the sarcosine-insoluble membrane fractions, which are highly enriched for OMPs, from bacteria grown under a range of conditions. Initially, the OMP-containing fractions were resolved by 2-DE and the proteins identified by MALDI-TOF MS. In addition, the OMP-containing fractions were separated by 1-D SDS-PAGE and protein identifications were made using nano LC MS/MS. Using these two methods a total of 35 proteins was identified from samples obtained from organisms grown in rich culture medium. Six of the proteins were identified only by 2-DE MALDI-TOF MS, whilst 17 proteins were identified only by 1-D LC MS/MS. We then analysed the OMPs from P. multocida which had been isolated from the bloodstream of infected chickens (a natural host) or grown in iron-depleted medium. Three proteins were found to be significantly up-regulated during growth in vivo and one of these (Pm0803) was also up-regulated during growth in iron-depleted medium. After bioinformatic analysis of the protein matches, it was predicted that over one third of the combined OMPs predicted by the bioinformatics sub-cellular localisation tools PSORTB and Proteome Analyst, had been identified during this study. This is the first comprehensive proteomic analysis of the P. multocida outer membrane and the first proteomic analysis of how a bacterial pathogen modifies its outer membrane proteome during infection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Hodgkin lymphoma (HL), the malignant Hodgkin Reed-Sternberg (HRS) cells constitute only 0.5% of 10% of the diseased tissue. The surrounding cellular infiltrate is enriched with T cells that are hypothesized to modulate antitumor immunity. We show that a marker of regulatory T cells, LAG-3, is strongly expressed on infiltrating lymphocytes present in proximity to HRS cells. Circulating regulatory T cells (CD4(+) CD25(hi) CD45 ROhi, CD4(+) CTLA4(hi), and CD4(+) LAG-3(hi)) were elevated in HL patients with active disease when compared with remission. Longitudinal profiling of EBV-specific CD8(+) T-cell responses in 94 HL patients revealed a selective loss of interferon-gamma expression by CD8(+) T cells specific for latent membrane proteins 1 and 2 (LMP1/2), irrespective of EBV tissue status. Intratumoral LAG-3 expression was associated with EBV tissue positivity, whereas FOXP3 was linked with neither LAG-3 nor EBV tissue status. The level of LAG-3 and FOXP3 expression on the tumor-infiltrating lymphocytes was coincident with impairment of LMP1/2-specific T-cell function. In vitro pre-exposure of peripheral blood mono-nuclear cells to HRS cell line supernatant significantly increased the expansion of regulatory T cells and suppressed LMP-specific T-cell responses. Deletion of CD4(+) LAG-3(+) T cells enhanced LMP-specific reactivity. These findings indicate a pivotal role for regulatory T cells and LAG-3 in the suppression of EBV-specific cell-mediated immunity in HL.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD4-CD8 ratio is an important diagnostic measure of immune system functioning. In particular, CD4-CD8 ratio predicts the time taken for progression of HIV infection to acquired immune deficiency syndrome (AIDS) and the long-term survival of AIDS patients. To map genes that regulate differences between healthy individuals in CD4-CD8 ratio, we typed 757 highly polymorphic microsatellite markers at an average spacing of similar to5 cM across the genome in 405 pairs of dizygotic twins at ages 12, 14 and 16. We used multipoint variance components linkage analysis to test for linkage between marker loci and CD4-CD8 ratio at each age. We found suggestive evidence of linkage on chromosome 11p in 12-year-old twins (LOD=2.55, P=0.00031) and even stronger evidence of linkage in the same region at age 14 (LOD 3.51, P=0.00003). Possible candidate genes include CD5 and CD6, which encode cell membrane proteins involved in the positive selection of thymocytes. We also found suggestive evidence of linkage at other areas of the genome including regions on chromosomes 1, 3, 4, 5, 6, 12, 13, 15, 17 and 22.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The EBV-encoded latent membrane proteins (LMP1 and LMP2), which are expressed in various EBV-associated malignancies have been proposed as a potential target for CTL-based therapy. However, the precursor frequency for LMP-specific CTL is generally low, and immunotherapy based on these antigens is often compromised by the poor immunogenicity and potential threat from their oncogenic potential. Here we have developed a replication-incompetent adenoviral vaccine that encodes multiple HLA class I-restricted CTL epitopes from LMP1 and LMP2 as a polyepitope. Immunization with this polyepitope vaccine consistently generated strong LMP-specific CTL responses in HLA A2/K-b mice, which can be readily detected by both ex vivo and in vivo T-cell assays. Furthermore, a human CTL response to LMP antigens can be rapidly expanded after stimulation with this recombinant polyepitope vector. These expanded T cells displayed strong lysis of autologous target cells sensitized with LMP1 and/or LMP2 CTL epitopes. More importantly, this adenoviral vaccine was also successfully used to reverse the outgrowth of LMP1-expressing tumors in HLA A2/K-b mice. These studies demonstrate that a replication-incompetent adenovirus polyepitope vaccine is an excellent tool for the induction of a protective CTL response directed toward multiple LMP CTL epitopes restricted through common HLA class I alleles prevalent in different ethnic groups where EBV-associated malignancies are endemic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dsb proteins control the formation and rearrangement of disulfide bonds during the folding of secreted and membrane proteins in bacteria. DsbG, a member of this family, has disulfide bond isomerase and chaperone activity. Here, we present two crystal structures of DsbG at 1.7- and 2.0-Angstrom resolution that are meant to represent the reduced and oxidized forms, respectively. The oxidized structure, however, reveals a mixture of both redox forms, suggesting that oxidized DsbG is less stable than the reduced form. This trait would contribute to DsbG isomerase activity, which requires that the active-site Cys residues are kept reduced, regardless of the highly oxidative environment of the periplasm. We propose that a Thr residue that is conserved in the cis-Pro loop of DsbG and DsbC but not found in other Dsb proteins could play a role in this process. Also, the structure of DsbG reveals an unanticipated and surprising feature that may help define its specific role in oxidative protein folding. Thus, the dimensions and surface features of DsbG show a very large and charged binding surface that is consistent with interaction with globular protein substrates having charged surfaces. This finding suggests that, rather than catalyzing disulfide rearrangement in unfolded substrates, DsbG may preferentially act later in the folding process to catalyze disulfide rearrangement in folded or partially folded proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na+ channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-containing ion channels by Nedd4 and Nedd4-2. We found that the carboxyl termini of the six voltage-gated Na+ (Na-v) channels contain typical PY motifs (PPXY), and a further Na-v contains a PY motif variant (LPXY). Not only did we demonstrate by Far-Western analysis that Nedd4 and Nedd4-2 interact with the PY motif-containing Na-v channels, but we also showed that these channels have conserved WW domain binding specificity. We further showed that the carboxyl termini fusion proteins of one central nervous system and one peripheral nervous system-derived Na+ channel (Na(v)1.2 and Na(v)1.7, respectively) are readily ubiquitinated by Nedd4-2. In Xenopus oocytes, Nedd4-2 strongly inhibited the activities of all three Na(v)s (Na(v)1.2, Na(v)1.7, and Na(v)1.8) tested. Interestingly, Nedd4 suppressed the activity of Na(v)1.2 and Na(v)1.7 but was a poor inhibitor of Na(v)1.8. Our results provide evidence that Nedd4 and Nedd4-2 are likely to be key regulators of specific neuronal Na-v channels in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteins secreted by and anchored on the surfaces of parasites are in intimate contact with host tissues. The transcriptome of infective cercariae of the blood fluke, Schistosoma mansoni, was screened using signal sequence trap to isolate cDNAs encoding predicted proteins with an N-terminal signal peptide. Twenty cDNA fragments were identified, most of which contained predicted signal peptides or transmembrane regions, including a novel putative seven-transmembrane receptor and a membrane-associated mitogen-activated protein kinase. The developmental expression pattern within different life-cycle stages ranged from ubiquitous to a transcript that was highly upregulated in the cercaria. A bioinformatics-based comparison of 100 signal peptides from each of schistosomes, humans, a parasitic nematode and Escherichia coli showed that differences in the sequence composition of signal peptides, notably the residues flanking the predicted cleavage site, might account for the negative bias exhibited in the processing of schistosome signal peptides in mammalian cells. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.