68 resultados para Medical Cell Biology

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A problem facing the use of subunit peptide and protein vaccines is their inability to stimulate protective immune responses. Many different approaches have been utilized to overcome this inefficient immune activation. The approach we have taken is to modify the vaccine antigen so that it now has adjuvant properties. To do this, multiple copies of minimal CD8 T cell epitopes were attached to a poly lysine lipid core. These constructs are known as lipid-core-peptides (LCP). The research presented here examines the adjuvant activity of LCP. Using mouse models, we were able to show that LCP were indeed able to activate antigen-presenting cells in vitro and to activate cytotoxic T-cell responses in vivo. More importantly, LCP were able to stimulate the development of a protective antitumour immune response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the dynamics of protein recruitment to DNA lesions, ion beams can be used to generate extremely localized DNA damage within restricted regions of the nuclei. This inhomogeneous spatial distribution of lesions can be visualized indirectly and rapidly in the form of radiation-induced foci using immunocytochemical detection or GFP-tagged DNA repair proteins. To analyze faster protein translocations and a possible contribution of radiation-induced chromatin movement in DNA damage recognition in live cells, we developed a remote-controlled system to obtain high-resolution fluorescence images of living cells during ion irradiation with a frame rate of the order of seconds. Using scratch replication labeling, only minor chromatin movement at sites of ion traversal was observed within the first few minutes of impact. Furthermore, time-lapse images of the GFP-coupled DNA repair protein aprataxin revealed accumulations within seconds at sites of ion hits, indicating a very fast recruitment to damaged sites. Repositioning of the irradiated cells after fixation allowed the comparison of live cell observation with immunocytochemical staining and retrospective etching of ion tracks. These results demonstrate that heavy-ion radiation-induced changes in sub-nuclear structures can be used to determine the kinetics of early protein recruitment in living cells and that the changes are not dependent on large-scale chromatin movement at short times postirradiation. © 2005 by Radiation Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A T cell antigen receptor (TCR) transmembrane sequence derived peptide (CP) has been shown to inhibit T cell activation both in vitro and in vivo at the membrane level of the receptor signal transduction. To examine the effect of sugar or lipid conjugations on CP function, we linked CP to 1-aminoglucosesuccinate (GS), N-myristate (MYR), mono-di-tripalmitate (LP1, LP2, or LP3), and a lipoamino acid (LA) and examined the effects of these compounds on T cell activation in vitro and by using a rat model of adjuvant-induced arthritis, in vivo. In vitro, antigen presentation results demonstrated that lipid conjugation enhanced CP's ability to lower IL-2 production from 56.99% +/- 15.69 S.D. observed with CP, to 12.08% +/- 3.34 S.D. observed with LA. The sugar conjugate GS resulted in only a mild loss of in vitro activity compared to CP (82.95% +/- 14.96 S.D.). In vivo, lipid conjugation retarded the progression of adjuvant-induced arthritis by approximately 50%, whereas the sugar. conjugated CP, GS, almost completely inhibited the progression of arthritis. This study demonstrates that hydrophobic peptide activity is markedly enhanced in vitro and in vivo by conjugation to lipids or sugars. This may have practical applications in drug delivery and bioavailability of hydrophobic peptides. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Many clinical trials of DC-based immunotherapy involve administration of monocyte-derived DCs (Mo-DC) on multiple occasions. We aimed to determine the optimal cell processing procedures and timing (leukapheresis, RBC depletion and cryopreservation) for generation of Mo-DC for clinical purposes. Methods Leukapheresis was undertaken using a COBE Spectra. Two instrument settings were compared - the standard semi-automated software (Version 4.7) (n = 10) and the fully automated software (Version 6.0) (n = 40). Density gradient centrifugation using Ficoll, Percoll, a combination of these methods or neither for RBC depletion were compared. Outcomes (including cell yield and purity) were compared for cryopreserved unmanipulated monocytes and cryopreserved Mo-DC. Results Software Version 6.0 provided significantly better enrichment for monocytes (P

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Classical cadherin adhesion molecules are key determinants of cell recognition and tissue morphogenesis, with diverse effects on cell behavior. Recent developments indicate that classical cadherins are adhesion-activated signaling receptors. In particular, early-immediate Rac signaling is emerging as a mechanism to coordinate cadherin-actin integration at the plasma membrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel, untransformed koala cell line (KC-1) was established by culturing koala conjunctival tissue in growth medium, which has permitted the study of the cell biology of this unique system. After the establishment of the KC-1 cell line, the cells were characterized by light microscopy, doubling time, and Western blot analysis. Light microscopy revealed that the cells have an epithelial morphology. Doubling times were significantly different (P < 0.015) depending on fetal calf serum (FCS) concentration (16.5 h in 10% FCS and 26.5 h in 2% FCS). Cells constricted while in suspension but were shown to attach to the coverslip (or flask) and flatten rapidly, less than 1 h after seeding. To confirm the epithelial nature of the cells, protein was extracted and Western blot analysis was performed. Subsequent probing with primary and secondary antibodies (monoclonal anticytokeratin clone C-11 IgG1 and anti-mouse IgG) revealed two bands at 45 and 52 kDa (compared against a protein molecular weight marker) that correspond to primary type I keratin and major type II keratin, respectively, expressed in simple epithelial cells. The koala cell line was adapted to grow continuously in Dulbecco modified Eagle medium containing 10% FCS for at least 30 passages. This unique cell line is an ideal toot for further investigation on koala cell biology and cytogenetics and for exploration of the pathophysiological mechanism of eye infections caused by different pathogens in koalas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insect cell cultures have been extensively utilised for means of production for heterologous proteins and biopesticides. Spodoptera frugiperda (Sf9) and Trichoplusia ni (High Five(TM)) cell lines have been widely used for the production of recombinant proteins, thus metabolism of these cell lines have been investigated thoroughly over recent years. The Helicoverpa zea cell line has potential use for the production of a biopesticide, specifically the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV). The growth, virus production, nutrient consumption and waste production of this cell line was investigated under serum-free culture conditions, using SF900II and a low cost medium prototype (LCM). The cell growth ( growth rates and population doubling time) was comparable in SF900II and LCM, however, lower biomass and cell specific virus yields were obtained in LCM. H. zea cells showed a preference for asparagine over glutamine, similar to the High Five(TM) cells. Ammonia was accumulated to significantly high levels (16 mM) in SF900II, which is an asparagine and glutamine rich medium. However, given the absence of asparagine and glutamine in the medium ( LCM), H. zea cells adapted and grew well in the absence of these substrates and no accumulation of ammonia was observed. The adverse effect of ammonia on H. zea cells is unknown since good production of biologically active HaSNPV was achieved in the presence of high ammonia levels. H. zea cells showed a preference for maltose even given an abundance supply of free glucose. Accumulation of lactate was observed in H. zea cell cultures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biological utilisation of copper requires that the metal, in its ionic forms, be meticulously transported, inserted into enzymes and regulatory proteins, and excess be excreted. To understand the trafficking process, it is crucial that the structures of the proteins involved in the varied processes be resolved. To investigate copper binding to a family of structurally related copper-binding proteins, we have characterised the second Menkes N-terminal domain (MNKr2). The structure, determined using H-1 and N-15 heteronuclear NMR, of the reduced form of MNKr2 has revealed two alpha-helices lying over a single beta-sheet and shows that the binding site, a Cys(X)(2)Cys pair, is located on an exposed loop. H-1-N-15 HSQC experiments demonstrate that binding of Cu(I) causes changes that are localised to conserved residues adjacent to the metal binding site. Residues in this area are important to the delivery of copper by the structurally related Cu(I) chaperones. Complementary site-directed mutagenesis of the adjacent residues has been used to probe the structural roles of conserved residues. (C) 2003 Published by Elsevier Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Merkel cell carcinoma (MCC) is a rare aggressive skin tumor which shares histopathological and genetic features with small-cell lung carcinoma (SCLC), both are of neuroendocrine origin. Comparable to SCLC, MCC cell lines are classified into two different biochemical subgroups designated as 'Classic' and 'Variant'. With the aim to identify typical gene-expression signatures associated with these phenotypically different MCC cell lines subgroups and to search for differentially expressed genes between MCC and SCLC, we used cDNA arrays to pro. le 10 MCC cell lines and four SCLC cell lines. Using significance analysis of microarrays, we defined a set of 76 differentially expressed genes that allowed unequivocal identification of Classic and Variant MCC subgroups. We assume that the differential expression levels of some of these genes reflect, analogous to SCLC, the different biological and clinical properties of Classic and Variant MCC phenotypes. Therefore, they may serve as useful prognostic markers and potential targets for the development of new therapeutic interventions specific for each subgroup. Moreover, our analysis identified 17 powerful classifier genes capable of discriminating MCC from SCLC. Real-time quantitative RT-PCR analysis of these genes on 26 additional MCC and SCLC samples confirmed their diagnostic classification potential, opening opportunities for new investigations into these aggressive cancers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One common characteristic of breast cancers arising in carriers of the predisposition gene BRCA1 is a loss of expression of the CDK inhibitor p27(Kip1) (p27), suggesting that p27 interacts epistatically with BRCA1. To investigate this relationship, we examined expression of p27 in mice expressing a dominant negative allele of Brca1 (MMTV-trBr) in the mammary gland. While these mice rarely develop tumors, they showed a 50% increase in p27 protein and a delay in mammary gland development associated with reduced proliferation. In contrast, on a p27 heterozygote background, MMTV-trBrca1 mice showed an increase in S phase cells, and normal mammary development. p27 was the only protein in the cyclin cyclin-dependent kinase network to show altered expression, suggesting that it may be a central mediator of cell cycle arrest in response to loss of function of BRCA1. Furthermore, in human mammary epithelial MCF7 cells expressing BRCA1-specific RNAi and in the BRCA1-deficient human tumor cell line HCC1937, p27 is elevated at the mRNA level compared to cells expressing wild-type BRCA1. We hypothesize that disruption of BRCA1 induces an increase in p27 that inhibits proliferation. Accordingly, reduction in p27 expression leads to enhancement of cellular proliferation in the absence of BRCA1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transporters of Ca2+ are potential drug targets and Ca2+ is a useful signal in the assessment of G-protein-coupled receptor activation. Assays involving the assessment of intracellular Ca2+ using microplate readers most often use Ca2+ indicators which do not exhibit a spectra shift on Ca2+ binding (e.g. fluo-3). Indicators that do exhibit a spectral shift upon Ca2+ binding (e.g. fura-2) offer potential advantages for the calibration of intracellular Ca2+ levels. However, experimental limitations may limit the use of ratiometric dyes in microplate readers capable of screening. In this study, we compared the assessment of intracellular Ca2+ in adherent breast cancer cells using ratiometric and nonratiometric Ca2+ indicators. Our results demonstrate that both fluo-3 and fura-2 detect ATP dose-dependent increases in intracellular Ca2+ in the MCF-7 breast cancer cell line and that some of the limitations in the use of fura-2 appear to be overcome by the use of glass bottom microplates. The calibrated intracellular Ca2+ levels derived using fura-2 are consistent with those from microscopy and cuvette-based studies. Fura-2 may be useful in microplate studies, where cell lines with different properties are compared or where screening treatments lead to differences in the number of cells or dye loading. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Focal biliary cirrhosis causes significant morbidity and mortality in cystic fibrosis (CF). Although the mechanisms of pathogenesis remain unclear, bile acids have been proposed as potential mediators of liver injury. This study examined bile acid composition in CF and assessed altered bile acid profiles to determine if they are associated with incidence and progression of liver injury in CF-associated liver disease (CFLD). Bile acid composition was determined by gas-liquid chromatography/mass spectrometry in bile, urine, and serum samples from 30 children with CFLD, 15 children with CF but without liver disease (CFnoLD)), and 43 controls. Liver biopsies from 29 CFLD subjects were assessed histologically by grading for fibrosis stage, inflammation, and disruption of the limiting plate. A significantly greater proportion of endogenous biliary ursodeoxycholic acid (UDCA) was demonstrated in CFnoLD subjects vs. both CFLD subjects and controls (2.4- and 2.2-fold, respectively; ANOVA, P = .04), and a 3-4 fold elevation in endogenous serum UDCA concentration was observed in both CFLD subjects and CFnoLD subjects vs. controls (ANOVA, P < .05). In CFLD, there were significant correlations between serum cholic acid and hepatic fibrosis, inflammation, and limiting plate disruption as well as the ratio of serum cholic acid/chenodeoxycholic acid to hepatic fibrosis, inflammation, and limiting plate disruption. In conclusion, elevated endogenous UDCA in CFnoLD suggests a possible protective role against liver injury in these patients. The correlation between both cholic acid and cholic acid/chenodeoxycholic acid levels with histological liver injury and fibrosis progression suggests a potential monitoring role for these bile acids in CFLD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The receptor protein tyrosine phosphatase density-enhanced phosphatase-1 (DEP-1) has been implicated in aberrant cancer cell growth and immune cell function, however, its function within cells has yet to be properly elucidated. To investigate the cellular function of DEP-1, stable cell lines inducibly expressing DEP-1 were generated. Induction of DEP-1 expression was found to decrease PDGF-stimulated tyrosine phosphorylation of a number of cellular proteins including the PDGF receptor, and to inhibit growth factor-stimulated phosphorylation of components of the MAPK pathway, indicating that DEP-1 antagonised PDGF receptor signalling. This was supported by data showing that DEP-1 expression resulted in a reduction in cell proliferation. DEP-1-expressing cells had fewer actin-containing microfilament bundles, reduced vinculin and paxillin-containing adhesion plaques, and were defective in interactions with fibronectin. Defective cell-substratum adhesion correlated with lack of activation of FAK in DEP-1-expressing cells. Time-lapse interference reflection microscopy of live cells revealed that although small focal contacts at the leading edge were generated in DEP-1-expressing cells, they failed to mature into stable focal adhesions, as found in control cells. Further motility analysis revealed that DEP-1-expressing cells retained limited random motility, but showed no chemotaxis towards a gradient of PDGF. In addition, cell-cell contacts were disrupted, with a change in the localisation of cadherin from discrete areas of cell-cell contact to large areas of membrane interaction, and there was a parallel redistribution of beta-catenin. These results demonstrate that DEP-1 is a negative regulator of cell proliferation, cell-substratum contacts, motility and chemotaxis in fibroblasts.