4 resultados para MATURATION PROMOTING FACTOR

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report that phosphoinositol-binding sorting nexin 5 ( SNX5) associates with newly formed macropinosomes induced by EGF stimulation. We used the recruitment of GFP-SNX5 to macropinosomes to track their maturation. Initially, GFP-SNX5 is sequestered to discrete subdomains of the macropinosome; these subdomains are subsequently incorporated into highly dynamic, often branched, tubular structures. Time-lapse videomicroscopy revealed the highly dynamic extension of SNX5-labelled tubules and their departure from the macropinosome body to follow predefined paths towards the perinuclear region of the cell, before fusing with early endosomal acceptor membranes. The extension and departure of these tubular structures occurs rapidly over 5-10 minutes and is dependent upon intact microtubules. As the tubular structures depart from the macropinosome there is a reduction in the surface area and an increase in tension of the limiting membrane of the macropinosome. In addition to the recruitment of SNX5 to the macropinosome, Rab5, SNX1 and EEA1 are also recruited by newly formed macropinosomes, followed by the accumulation of Rab7. SNX5 forms heterodimers with SNX1 and this interaction is required for endosome association of SNX5. We propose that the departure of SNX5-positive tubules represents a rapid mechanism of recycling components from macropinosomes thereby promoting their maturation into Rab7-positive structures. Collectively these findings provide a detailed real-time characterisation of the maturation process of the macropinocytic endosome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of fatty liver is rising in association with the global increase in obesity and type 2 diabetes. In the past, simple steatosis was regarded as benign, but the presence of another liver disease may provide a synergistic combination of steatosis, cellular adaptation, and oxidative damage that aggravates liver injury. In this review, a major focus is on the role of steatosis as a co-factor in chronic hepatitis C (HCV), where the mechanisms promoting fibrosis and the effect of weight reduction in minimizing liver injury have been most widely studied. Steatosis, obesity, and associated metabolic factors may also modulate the response to alcohol- and drug-induced liver disease and may be risk factors for the development of hepatocellular cancer. The pathogenesis of injury in obesity-related fatty liver disease involves a number of pathways, which are currently under investigation. Enhanced oxidative stress, increased susceptibility to apoptosis, and a dysregulated response to cellular injury have been implicated, and other components of the metabolic syndrome such as hyperinsulinernia and hyperglycemia are likely to have a role. Fibrosis also may be increased as a by-product of altered hepatocyte regeneration and activation of bipotential hepatic progenitor cells. In conclusion, active management of obesity and a reduction in steatosis may improve liver injury and decrease the progression of fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monocyte-derived dendritic cells (MoDCs) in clinical use for cancer immunotherapy are ideally generated in serum-free medium (SFM) with inclusion of a suitable maturation factor toward the end of the incubation period. Three good manfacturing practice (GMP) grade SFMs (AIM-V, X-VIVO 15, and X-VIVO 20) were compared with RPMI-1640, supplemented with 10% fetal bovine serum or 10% human serum. DCs generated for 7 days in SFM were less mature and secreted less interleukin (IL) 12p70 and IL-10 than DCs generated in 10% serum. DC yield was comparable in SFMs, and a greater proportion of cells was viable after maturation. Toll-like receptor (TLR) ligands were compared for their ability to induce cytokine secretion under serum-free conditions in the presence of interferon (IFN) gamma. With the exception of Poly I:C, TLR ligands stimulated high levels of IL-10 secretion. High levels of IL-12p70 were induced by two TLR4-mediated stimuli, lipopolysaccharide and Ribomunyl, a clinical-grade bacterial extract. When T-cell responses were compared in allogeneic mixed leukocyte reaction, DCs stimulated with Ribomunyl induced higher levels of IFN gamma than DCs stimulated with the cytokine cocktail: tumor necrosis factor-alpha, IL-1 beta, IL-6, and prostaglandin E-2. In the presence of IL-10 neutralizing antibodies, DC IL-12p70 production and T-cell IFN gamma were increased in vitro. Similarly, DCs stimulated with Ribomunyl, IFN gamma, and anti-IL-10 induced high levels of tetanus toxoid-specific T-cell proliferation and IFN gamma secretion. Thus, MoDCs generated ill SFM efficiently stimulate T-cell IFN gamma production after maturation in the presence of a clinical-grade TLR4 agonist and IL-10 neutralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DCC (deleted in colorectal cancer)-the receptor of the netrin-1 neuronal guidance factor-is expressed and is active in the central nervous system (CNS) during development, but is down-regulated during maturation. The substantia nigra contains the highest level of netrin-1 mRNA in the adult rodent brain, and corresponding mRNA for DCC has also been detected in this region but has not been localized to any particular neuron type. In this study, an antibody raised against DCC was used to determine if the protein was expressed by adult dopamine neurons, and identify their distribution and projections. Significant DCC-immunoreactivity was detected in midbrain, where it was localized to ventrally displaced A9 dopamine neurons in the substantia nigra, and ventromedial A10 dopamine neurons predominantly situated in and around the interfascicular nucleus. Strong immunoreactivity was not detected in dopamine neurons found elsewhere, or in non-dopamine-containing neurons in the midbrain. Terminal fields selectively labeled with DCC antibody corresponded to known nigrostriatal projections to the dorsolateral striatal patches and dorsomedial shell of the accumbens, and were also detected in prefrontal cortex, septum, lateral habenular and ventral pallidum. The unique distribution of DCC-immunoreactivity in adult ventral midbrain dopamine neurons suggests that netrin-1/DCC signaling could function in plasticity and remodeling previously identified in dopamine projection pathways. In particular, a recent report that DCC is regulated through the ubiquitin-proteosome system via Siah/Sina proteins, is consistent with a potential involvement in genetic and sporadic forms of Parkinson's disease. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.