3 resultados para HO-1

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clark 1 (diphenylarsine chloride) and Clark 2 ( diphenylarsine cyanide) were used as chemical weapon agents (CWA), and the soil contamination by these CWA and their degraded products, diphenyl and phenyl arsenicals, has been one of the most serious environmental issues. In a series of comparisons in toxicity between trivalent and pentavalent arsenicals we investigated differences in the accumulation and toxicity of phenylarsine oxide (PAO(3+)) and phenylarsonic acid (PAA(5+)) in rat heart microvascular endothelial cells. Both the cellular association and toxicity of PAO(3+) were much higher than those of PAA(5+), and LC50 values of PAO(3+) and PAA(5+) were calculated to be 0.295 muM and 1.93 mM, respectively. Buthionine sulfoximine, a glutathione depleter, enhanced the cytotoxicity of both PAO(3+) and PAA(5+). N-Acetyl-L-cysteine (NAC) reduced the cytotoxicity and induction of heme oxygenase-1 (HO-1) mRNA in PAO(3+)-exposed cells, while NAC affected neither the cytotoxicity nor the HO-1 mRNA level in PAA(5+)-exposed cells. The effect of NAC may be due to a strong affinity of PAO(3+) to thiol groups because both NAC and GSH inhibited the cellular accumulation of PAO(3+), but PAA(3+) increased tyrosine phosphorylation levels of cellular proteins. These results indicate that the inhibition of protein phosphatases as well as the high affinity to cellular components may confer PAO(3+) the high toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative metabolism of bilirubin (BR) - a breakdown product of haem with cytoprotective and toxic properties - is an important route of detoxification in addition to glucuronidation. The major enzyme(s) involved in this oxidative degradation are not known. In this paper, we present evidence for a major role of the hepatic cytochrome P450 2A5 (Cyp2a5) in BR degradation during cadmium intoxication, where the BR levels are elevated following induction of haem oxygenase-1 (HO-1). Treatment of DBA/2J mice with CdCl2 induced both the Cyp2a5 and HO-1, and increased the microsomal BR degradation activity. By contrast, the total cytochrome P450 (CYP) content and the expression of Cyp1a2 were down-regulated by the treatment. The induction of the HO-1 and Cyp2a5 was substantial at the mRNA, protein and enzyme activity levels. In each case, the up-regulation of HO-1 preceded that of Cyp2a5 with a 5-10 h interval. BR totally inhibited the microsomal Cyp2a5-dependent coumarin hydroxylase activity, with an IC50 approximately equal to the substrate concentration. The 7-methoxyresorufin 7-O-demethylase (MROD) activity, catalyzed mainly by the Cyp1a2, was inhibited up to 36% by BR. The microsomal BR degradation was inhibited by coumarin and a monoclonal antibody against the Cyp2a5 by about 90%. Furthermore, 7-methoxyresorufin, a substrate for the Cyp1a2, inhibited BR degradation activity by approximately 20%. In sum, the results strongly suggest a major role for Cyp2a5 in the oxidative degradation of BR. Secondly, the coordinated up-regulation of the HO-1 and Cyp2a5 during Cd-mediated injury implicates a network of enzyme systems in the maintenance of balancing BR production and elimination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cadmium (Cd) is a metal toxin of continuing worldwide concern. Daily intake of Cd, albeit in small quantities, is associated with a number of adverse health effects which are attributable to distinct pathological changes in a variety of tissues and organs. In the present review, we focus on its renal tubular effects in people who have been exposed environmentally to Cd at levels below the provisional tolerable intake level set for the toxin. We highlight the data linking such low-level Cd intake with tubular injury, altered abundance of cytochromes P450 (CYPs) in the kidney and an expression of a hypertensive phenotype. We provide updated knowledge on renal and vascular effects of the eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and eicosatrienoic acids (EETs), which are biologically active metabolites from arachidonate metabolism mediated by certain CYPs in the kidney. We note the ability of Cd to elicit oxidative stress and to alter metal homeostasis notably of zinc which may lead to augmentation of the defense mechanisms involving induction of the antioxidant enzyme heme oxygenase-1 (HO-1) and the metal binding protein metallothionein (MT) in the kidney. We hypothesize that renal Cd accumulation triggers the host responses mediated by HO-I and MT in an attempt to protect the kidney against injurious oxidative stress and to resist a rise in blood pressure levels. This hypothesis predicts that individuals with less active HO-1 (caused by the HO-1 genetic polymorphisms) are more likely to have renal injury and express a hypertensive phenotype following chronic ingestion of low-level Cd, compared with those having more active HO-1. Future analytical and molecular epidemiologic research should pave the way to the utility of induction of heme oxygenases together with dietary antioxidants in reducing the risk of kidney injury and hypertension in susceptible people.