7 resultados para Feces
em University of Queensland eSpace - Australia
Resumo:
The scabies mite, Sarcoptes scabiei, is the causative agent of scabies, a disease that is common among disadvantaged populations and facilitates streptococcal infections with serious sequelae. Previously, we encountered large families of genes encoding paralogues of house dust mite protease allergens with their catalytic sites inactivated by mutation (scabies mite inactivated protease paralogues [SMIPPs]). We postulated that SMIPPs have evolved as an adaptation to the parasitic lifestyle of the scabies mite, functioning as competitive inhibitors of proteases involved in the host–parasite interaction. To propose testable hypotheses for their functions, it is essential to know their locations in the mite. Here we show by immunohistochemistry that SMIPPs exist in two compartments: 1) internal to the mite in the gut and 2) external to the mite after excretion from the gut in scybala (fecal pellets). SMIPPs may well function in both of these compartments to evade host proteases.
Resumo:
Fecal culture for Escherichia coli 0157:H7 was compared to rectoanal mucosal swab (RAMS) culture in dairy heifers over a 1-year period. RAMS enrichment culture was as sensitive as fecal culture using immunomagnetic separation (IMS) (P = 0.98, as determined by a chi-square test). RAMS culture is less costly than fecal IMS culture and can yield quantitative data.
Resumo:
The emergence of antibiotic resistance among pathogenic and commensal bacteria has become a serious problem worldwide. The use and overuse of antibiotics in a number of settings are contributing to the development of antibiotic-resistant microorganisms. The class 1 and 2 integrase genes (intI1 and intI2, respectively) were identified in mixed bacterial cultures enriched from bovine feces by growth in buffered peptone water (BPW) followed by integrase-specific PCR. Integrase-positive bacterial colonies from the enrichment cultures were then isolated by using hydrophobic grid membrane filters and integrase-specific gene probes. Bacterial clones isolated by this technique were then confirmed to carry integrons by further testing by PCR and DNA sequencing. Integron-associated antibiotic resistance genes were detected in bacteria such as Escherichia coli, Aeromonas spp., Proteus spp., Morganella morganii, Shewanella spp., and urea-positive Providencia stuartii isolates from bovine fecal samples without the use of selective enrichment media containing antibiotics. Streptomycin and trimethoprim resistance were commonly associated with integrons. The advantages conferred by this methodology are that a wide variety of integron-containing bacteria may be simultaneously cultured in BPW enrichments and culture biases due to antibiotic selection can be avoided. Rapid and efficient identification, isolation, and characterization of antibiotic resistance-associated integrons are possible by this protocol. These methods will facilitate greater understanding of the factors that contribute to the presence and transfer of integron-associated antibiotic resistance genes in bacterial isolates from red meat production animals.
Resumo:
Twelve dairy heifers were used to examine the clinical response of an alimentary oligofructose overload. Six animals were divided into 3 subgroups, and each was given a bolus dose of 13, 17, or 21 g/kg of oligofructose orally. The control group (n = 6) was sham-treated with tap water. Signs of lameness, cardiovascular function, and gastrointestinal function were monitored every 6 h during development of rumen acidosis. The heifers were euthanized 48 and 72 h after administration of oligofructose. All animals given oligofructose developed depression, anorexia, and diarrhea 9 to 39 h after receiving oligofructose. By 33 to 45 h after treatment, the feces returned to normal consistency and the heifers began eating again. Animals given oligofructose developed transient fever, severe metabolic acidosis, and moderate dehydration, which were alleviated by supportive therapy. Four of 6 animals given oligofructose displayed clinical signs of laminitis starting 39 to 45 h after receiving oligofructose and lasting until euthanasia. The lameness was obvious, but could easily be overlooked by the untrained eye, because the heifers continued to stand and walk, and did not interrupt their eating behavior. No positive pain reactions or lameness were seen in control animals. Based on these results, we conclude that an alimentary oligofructose overload is able to induce signs of acute laminitis in cattle. This model offers a new method, which can be used in further investigation of the pathogenesis and pathophysiology of bovine laminitis.
Long-term persistence of multi-drug-resistant Salmonella enterica serovar Newport in two dairy herds
Resumo:
Objective - To evaluate the association between maintaining joint hospital and maternity pens;and persistence of multi-drug-resistant (MDR) Salmonella enterica serovar Newport on 2 dairy farms. Design - Observational study. Sample Population - Feces and environmental samples from 2 dairy herds. Procedure - Herds were monitored for fecal shedding of S enterica Newport after outbreaks of clinical disease. Fecal and environmental samples were collected approximately monthly from pens housing sick cows and calving cows and from pens containing lactating cows. Cattle shedding the organism were tested serially on subsequent visits to determine carrier status. One farm was resampled after initiation of interventional procedures, including separation of hospital and maternity pens. Isolates were characterized via serotyping, determination of antimicrobial resistance phenotype, detection of the CMY-2 gene, and DNA fingerprinting. Results - The prevalence (32.4% and 33.3% on farms A and B, respectively) of isolating Salmonella from samples from joint hospital-maternity pens was significantly higher than the prevalence in samples from pens housing preparturient cows (0.8%, both farms) and postparturient cows on Farm B (8.8%). Multi-drug-resistant Salmonella Newport was isolated in high numbers from bedding material, feed refusals, lagoon slurry, and milk filters. One cow excreted the organism for 190 days. Interventional procedures yielded significant reductions in the prevalences of isolating the organism from fecal and environmental samples. Most isolates were of the C2 serogroup and were resistant to third-generation cephalosporins. Conclusions and Clinical Relevance - Management practices may be effective at reducing the persistence of MDR Salmonella spp in dairy herds, thus mitigating animal and public health risk.
Resumo:
Electrolyte Transport in the Mammalian Colon: Mechanisms and Implications for Disease. Physiol. Rev. 82: 245-289, 2002.The colonic epithelium has both absorptive and secretory functions. The transport is characterized by a net absorption of NaCl, short-chain fatty acids (SCFA), and water, allowing extrusion of a feces with very little water and salt content. In addition, the epithelium does secret mucus, bicarbonate, and KCl. Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell. Meanwhile, most of the participating transport proteins have been identified, and their function has been studied in detail. Absorption of NaCl is a rather steady process that is controlled by steroid hormones regulating the expression of epithelial Na+ channels (ENaC), the Na+-K+-ATPase, and additional modulating factors such as the serum- and glucocorticoid-regulated kinase SGK. Acute regulation of absorption may occur by a Na+ feedback mechanism and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl- secretion in the adult colon relies on luminal CFTR, which is a cAMP-regulated Cl- channel and a regulator of other transport proteins. As a consequence, mutations in CFTR result in both impaired Cl- secretion and enhanced Na+ absorption in the colon of cystic fibrosis (CF) patients. Ca2+- and cAMP-activated basolateral K+ channels support both secretion and absorption of electrolytes and work in concert with additional regulatory proteins, which determine their functional and pharmacological profile. Knowledge of the mechanisms of electrolyte transport in the colon enables the development of new strategies for the treatment of CF and secretory diarrhea. It will also lead to a better understanding of the pathophysiological events during inflammatory bowel disease and development of colonic carcinoma.