2 resultados para CANINE-DISTEMPER VIRUS

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemics of marine pathogens can spread at extremely rapid rates. For example, herpes virus spread through pilchard populations in Australia at a rate in excess of 10 000 km year(-1), and morbillivirus infections in seals and dolphins have spread at more than 3000 km year(-1). In terrestrial environments, only the epidemics of myxomatosis and calicivirus in Australian rabbits and West Nile Virus in birds in North America have rates of spread in excess of 1000 km year(-1). The rapid rates of spread of these epidemics has been attributed to flying insect vectors, but flying vectors have not been proposed for any marine pathogen. The most likely explanation for the relatively rapid spread of marine pathogens is the lack of barriers to dispersal in some parts of the ocean, and the potential for long-term survival of pathogens outside the host. These findings caution that pathogens may pose a particularly severe problem in the ocean. There is a need to develop epidemic models capable of generating these high rates of spread and obtain more estimates of disease spread rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the United States and several other countries., the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including. a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to. model disease explicitly.