32 resultados para 280207 Pattern Recognition

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new scheme for off-line recognition of multi-font numerals using the Takagi-Sugeno (TS) model. In this scheme, the binary image of a character is partitioned into a fixed number of sub-images called boxes. The features consist of normalized vector distances (gamma) from each box. Each feature extracted from different fonts gives rise to a fuzzy set. However, when we have a small number of fonts as in the case of multi-font numerals, the choice of a proper fuzzification function is crucial. Hence, we have devised a new fuzzification function involving parameters, which take account of the variations in the fuzzy sets. The new fuzzification function is employed in the TS model for the recognition of multi-font numerals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selection of machine learning techniques requires a certain sensitivity to the requirements of the problem. In particular, the problem can be made more tractable by deliberately using algorithms that are biased toward solutions of the requisite kind. In this paper, we argue that recurrent neural networks have a natural bias toward a problem domain of which biological sequence analysis tasks are a subset. We use experiments with synthetic data to illustrate this bias. We then demonstrate that this bias can be exploitable using a data set of protein sequences containing several classes of subcellular localization targeting peptides. The results show that, compared with feed forward, recurrent neural networks will generally perform better on sequence analysis tasks. Furthermore, as the patterns within the sequence become more ambiguous, the choice of specific recurrent architecture becomes more critical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and most importantly - prevention from over-fitting for prediction of peptide binding to HLA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Polysomnography (PSG) is the current standard protocol for sleep disordered breathing (SDB) investigation in children. Presently, there are limited reliable screening tests for both central (CE) and obstructive (OE) respiratory events. This study compared three indices, derived from pulse oximetry and electrocardiogram ( ECG), with the PSG gold standard. These indices were heart rate (HR) variability, arterial blood oxygen de-saturation (SaO(2)) and pulse transit time (PTT). Methods: 15 children (12 male) from routine PSG studies were recruited (aged 3 - 14 years). The characteristics of the three indices were based on known criteria for respiratory events (RPE). Their estimation singly and in combination was evaluated with simultaneous scored PSG recordings. Results: 215 RPE and 215 tidal breathing events were analysed. For OE, the obtained sensitivity was HR (0.703), SaO(2) (0.047), PTT (0.750), considering all three indices (0) and either of the indices (0.828) while specificity was (0.891), (0.938), (0.922), (0.953) and (0.859) respectively. For CE, the sensitivity was HR (0.715), SaO(2) (0.278), PTT (0.662), considering all indices (0.040) and either of the indices (0.868) while specificity was (0.815), (0.954), (0.901), (0.960) and (0.762) accordingly. Conclusions: Preliminary findings herein suggest that the later combination of these non-invasive indices to be a promising screening method of SDB in children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tree Augmented Naïve Bayes (TAN) classifier relaxes the sweeping independence assumptions of the Naïve Bayes approach by taking account of conditional probabilities. It does this in a limited sense, by incorporating the conditional probability of each attribute given the class and (at most) one other attribute. The method of boosting has previously proven very effective in improving the performance of Naïve Bayes classifiers and in this paper, we investigate its effectiveness on application to the TAN classifier.